uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Density functional models of the mechanism for decarboxylation in orotidine decarboxylase
Department of Physics, Stockholm Center for Physics, Astronomy and Biotechnology, Stockholm University.
2002 (English)In: Journal of Molecular Modeling, ISSN 1610-2940, E-ISSN 0948-5023, Vol. 8, no 4, 119-130 p.Article in journal (Refereed) Published
Abstract [en]

The mechanism of orotidine 5-monophosphate decarboxylase (ODCase) has been modeled using hybrid Density Functional Theory (B3LYP functional). The main goal of the present study was to investigate if much larger quantum chemical models of the active site than previously used could shed new light on the mechanism. The models used include the five conserved amino acids expected to be the most important ones for catalysis. One result of this model is that a mechanism involving a direct cleavage of the C-C bond followed by a protonation of C6 by Lys93 appears unlikely, with a barrier for decarboxylation 20 kcal mol(-1) too high. Additional effects like electrostatic stress and ground-state destabilization have been estimated to have only a minor influence on the reaction barrier. The conclusion from the calculations is that the negative charge developing on the substrate during decarboxylation must be stabilized by a protonation of the carbonyl O2 of the substrate. For this mechanism, the addition of the catalytic amino acids decreases the reaction barrier by 25 kcal mol(-1), but full agreement with experimental results has still not been reached. Further modifications of this mechanism are discussed.

Place, publisher, year, edition, pages
2002. Vol. 8, no 4, 119-130 p.
Keyword [en]
enzyme catalysis, Density Functional Theory, orotidine 5 '-monophosphate decarboxylase
National Category
Natural Sciences
URN: urn:nbn:se:uu:diva-145461DOI: 10.1007/s00894-002-0080-2PubMedID: 12111391OAI: oai:DiVA.org:uu-145461DiVA: diva2:396525

Electronic supplementary material to this paper can be obtained by using the Springer LINK server located a http://dx.doi.org/10.1007/s00894-002-0080-2.

Available from: 2011-02-10 Created: 2011-02-09 Last updated: 2016-04-22

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Lundberg, Marcus
In the same journal
Journal of Molecular Modeling
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 366 hits
ReferencesLink to record
Permanent link

Direct link