uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Moderate hypothermia induces a preferential increase in pancreatic islet blood flow in anesthetized rats
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
2007 (English)In: American Journal of Physiology. Regulatory Integrative and Comparative Physiology, ISSN 0363-6119, E-ISSN 1522-1490, Vol. 293, no 3, R1438-R1443 p.Article in journal (Refereed) Published
Abstract [en]

The aim of the study was to characterize the effects of induced moderate hypothermia on splanchnic blood flow, with particular reference to that of the pancreas and the islets of Langerhans. We also investigated how interference with the autonomic nervous system at different levels influenced the blood perfusion during hypothermia. For this purpose, hypothermia (body temperature of 28°C) was induced by external cooling, whereas normothermic (37.5°C) anesthetized Sprague-Dawley rats were used as controls. Some rats were pretreated with either propranolol, yohimbine, atropine, hexamethonium, or a bilateral abdominal vagotomy. Our findings suggest that moderate hypothermia elicits complex, organ-specific circulatory changes, with increased perfusion noted in the pylorus, as well as the whole pancreas and the pancreatic islets. The pancreatic islets maintain their high blood perfusion through mechanisms involving both sympathetic and parasympathetic mediators, whereas the increased pyloric blood flow is mediated through parasympathetic mechanisms. Renal blood flow was decreased, and this can be prevented by ganglionic blockade and is also influenced by β-adrenoceptors.

Place, publisher, year, edition, pages
2007. Vol. 293, no 3, R1438-R1443 p.
Keyword [en]
Adrenal blood flow, Intestinal blood flow, Pancreatic blood flow, Renal blood flow
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-11944DOI: 10.1152/ajpregu.00259.2007ISI: 000249156000060PubMedID: 17626132OAI: oai:DiVA.org:uu-11944DiVA: diva2:39713
Available from: 2007-11-07 Created: 2007-11-07 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed
By organisation
Department of Medical Cell Biology
In the same journal
American Journal of Physiology. Regulatory Integrative and Comparative Physiology
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 317 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf