uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
ALTERNATIVE CRITERIA FOR THE BOUNDEDNESS OF VOLTERRA INTEGRAL OPERATORS IN LEBESGUE SPACES
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.
2009 (English)In: Mathematical Inequalities & Applications, ISSN 1331-4343, E-ISSN 1848-9966, Vol. 12, no 4, 873-889 p.Article in journal (Refereed) Published
Abstract [en]

Three different criteria for L-p - L-q boundedness of Volterra integral operator (1.1) with locally integrable weight functions w, v and a non-negative kernel k(x, y) satisfying Oinarov's condition for each case 1 < p <= q < infinity and 1 < q < p < infinity are given. Relations between components of the boundedness constants are described.

Place, publisher, year, edition, pages
2009. Vol. 12, no 4, 873-889 p.
Keyword [en]
Integral operators, Lebesgue spaces, weights, boundedness
National Category
Mathematics
Identifiers
URN: urn:nbn:se:uu:diva-137674ISI: 000274131400021OAI: oai:DiVA.org:uu-137674DiVA: diva2:399707
Available from: 2011-02-23 Created: 2010-12-15 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text

By organisation
Department of Mathematics
In the same journal
Mathematical Inequalities & Applications
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 335 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf