uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Electron density and temperature measurements in the cold plasma environment of Titan: Implications for atmospheric escape
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
Show others and affiliations
2010 (English)In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 37, no 20, L20105- p.Article in journal (Refereed) Published
Abstract [en]

We present electron temperature and density measurements of Titan's cold ionospheric plasma from the Langmuir probe instrument on Cassini from 52 flybys. An expression of the density as a function of temperature is presented for altitudes below two Titan radii. The density falls off exponentially with increased temperature as log(n(e)) = -2.0log(T-e) + 0.6 on average around Titan. We show that this relation varies with location around Titan as well as with the solar illumination direction. Significant heating of the electrons appears to take place on the night/wake side of Titan as the density-temperature relation is less steep there. Furthermore, we show that the magnetospheric ram pressure is not balanced by the thermal and magnetic pressure in the topside ionosphere and discuss its implications for plasma escape. The cold ionospheric plasma of Titan extends to higher altitudes in the wake region, indicating the loss of atmosphere down the induced magnetospheric tail.

Place, publisher, year, edition, pages
2010. Vol. 37, no 20, L20105- p.
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-147127DOI: 10.1029/2010GL044544ISI: 000283545600004OAI: oai:DiVA.org:uu-147127DiVA: diva2:399893
Available from: 2011-02-24 Created: 2011-02-24 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
Swedish Institute of Space Physics, Uppsala Division
In the same journal
Geophysical Research Letters
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 370 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf