uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
SNP detection and prediction of variability between chicken lines using genome resequencing of DNA pools
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, The Linnaeus Centre for Bioinformatics.ORCID iD: 0000-0002-2722-5264
2010 (English)In: BMC Genomics, ISSN 1471-2164, E-ISSN 1471-2164, Vol. 11, no 1, 665- p.Article in journal (Refereed) Published
Abstract [en]

Background: Next-generation sequencing technologies are widely used for detection of millions of Single Nucleotide Polymorphisms (SNPs) and also provide a means of assessing their variation. This information is useful for composing subsets of highly informative SNPs for region-specific or genome-wide analysis and to identify mutations regulating phenotypic differences within or between populations. In this study, we investigated the sensitivity of SNP detection and introduced the flanking SNPs value (FSV) as a novel measure for predicting SNP-variability using similar to 5X genome resequencing with ABI SOLID and DNA pools from two chicken lines divergently selected for juvenile bodyweight. Results: Genotyping with a 60 K SNP chip revealed polymorphisms within or between two divergently selected chicken lines for 31 363 SNPs, 48% of which were also detected using resequencing of DNA pools. SNP detection using resequencing was more powerful for positions with larger differences in allele frequency between the lines. About 50% of the SNPs with non-reference allele frequencies in the range 0.5-0.6 and 67% of those with frequencies > 0.9 could be detected. On average, similar to 3.7 SNPs/kb were detected by resequencing, with about 5% lower density on microchromosomes than on macrochromosomes. There was a positive correlation between the observed between-line SNP variation from the 60 K chip analysis and our proposed FSV score computed from the genome resequencing data. The strongest correlations on macrochromosomes and microchromosomes were observed when the FSV was calculated with total flanking regions of 62 kb (correlation 0.55) and 38 kb (correlation 0.45), respectively. Conclusions: Genome resequencing with limited coverage (similar to 5X) using pooled DNA samples and three non-reference reads as a threshold for SNP detection, identified 50 - 67% of the 60 K SNPs with a non-reference allele frequency larger than 0.5. The SNP density was around 5% lower on the microchromosomes, most likely because of their higher gene content. Our proposed method to estimate the SNP variation (FSV) uses additional sequence information to better predict SNP informativity. The FSV scores showed higher correlations for SNPs with a larger difference in allele frequency between the populations. The correlation was strongest on macrochromosomes, probably due to a lower recombination rate.

Place, publisher, year, edition, pages
2010. Vol. 11, no 1, 665- p.
National Category
Biological Sciences
URN: urn:nbn:se:uu:diva-147094DOI: 10.1186/1471-2164-11-665ISI: 000285303100001PubMedID: 21108801OAI: oai:DiVA.org:uu-147094DiVA: diva2:399974
Available from: 2011-02-24 Created: 2011-02-24 Last updated: 2016-05-18

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Carlborg, Örjan
By organisation
The Linnaeus Centre for Bioinformatics
In the same journal
BMC Genomics
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 276 hits
ReferencesLink to record
Permanent link

Direct link