uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Theoretical study of the ethylene radical cation: geometry and hyperfine structure
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Quantum Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Quantum Chemistry.
1998 (English)In: Chemical Physics, ISSN 0301-0104, E-ISSN 1873-4421, Vol. 236, no 1-3, 53-61 p.Article in journal (Refereed) Published
Abstract [en]

The geometry and the hyperfine structure in the ethylene radical cation have been studied by means of a number of high-level post-SCF ab initio methods, including quadratic CI with single and double substitutions and perturbative triple corrections, QCISD(T), coupled cluster with single and double substitutions and perturbative triple corrections, CCSD(T), and individually selected multi-reference CI with B-K correction, (MRD-CI)/B-K. A value of 20.2 degrees has been computed for the torsion angle in this cation with the QCISD(T)/6-311G(d, p) method, which compares favourably with the experimentally reported angle of similar to 25 degrees. The computed potential barrier to inversion through the planar conformation, as obtained at the QCISD(T)/6-311 + + G(2df, p)//QCISD(T)/6-31 1G(d, p) level (1.24 kJ/mol), is smaller than the experimental value of similar to 3 kJ/mol, but an order of magnitude better than in previous work. The hyperfine coupling constants of the protons and of C-13 are calculated by the (MRD-CI)/B-K method with a relatively large basis set, yielding somewhat larger absolute values than the experimental couplings (-4.0 G for the protons and +6.0 G for C-13, as compared with -2.4 and +4.0 G, respectively). For both the geometrical parameters and the hyperfine couplings, the results of the present study are in considerably better agreement with experiment than previously reported theoretical results.

Place, publisher, year, edition, pages
1998. Vol. 236, no 1-3, 53-61 p.
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-147738ISI: 000075932400006OAI: oai:DiVA.org:uu-147738DiVA: diva2:400815
Available from: 2011-02-28 Created: 2011-02-28 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Salhi-Benachenhou, NessimaLunell, Sten

Search in DiVA

By author/editor
Salhi-Benachenhou, NessimaLunell, Sten
By organisation
Department of Quantum Chemistry
In the same journal
Chemical Physics
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 810 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf