uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Interplay of Metabolism and Transport in Determining Oral Drug Absorption and Gut Wall Metabolism: A Simulation Assessment Using the "Advanced Dissolution, Absorption, Metabolism (ADAM)" Model
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy.
2010 (English)In: Current drug metabolism, ISSN 1389-2002, Vol. 11, no 9, 716-729 p.Article, review/survey (Refereed) Published
Abstract [en]

Bioavailability of orally administered drugs can be influenced by a number of factors including release from the formulation, dissolution, stability in the gastrointestinal (GI) environment, permeability through the gut wall and first-pass gut wall and hepatic metabolism. Although there are various enzymes in the gut wall which may contribute to gut first pass metabolism, Cytochrome P450 (CYP) 3A has been shown to play a major role. The efflux transporter P-glycoprotein (P-gp; MDR1/ABCB1) is the most extensively studied drug efflux transporter in the gut and might have a significant role in the regulation of GI absorption. Although not every CYP3A substrate will have a high extent of gut wall first-pass extraction, being a substrate for the enzyme increases the likelihood of a higher first-pass extraction. Similarly, being a P-gp substrate does not necessarily pose a problem with the gut wall absorption however it may reduce bioavailability in some cases (e. g. when drug has low passive permeability). An on-going debate has focused on the issue of the interplay between CYP3A and P-gp such that high affinity to P-gp increases the exposure of drug to CYP3A through repeated cycling via passive diffusion and active efflux, decreasing the fraction of drug that escapes first pass gut metabolism (F-G). The presence of P-gp in the gut wall and the high affinity of some CYP3A substrates to this transporter are postulated to reduce the potential for saturating the enzymes, thus increasing gut wall first-pass metabolism for compounds which otherwise would have saturated CYP3A. Such inferences are based on assumptions in the modelling of oral drug absorption. These models should be as mechanistic as possible and tractable using available in vitro and in vivo information. We review, through simulation, this subject and examine the interplay between gut wall metabolism and efflux transporters by studying the fraction of dose absorbed into enterocytes (F-a) and F-G via systematic variation of drug characteristics, in accordance with the Biopharmaceutics Classification System (BCS) within one of the most physiological models of oral drug absorption currently available, respectively ADAM. Variables studied included the intrinsic clearance (CLint) and the Michaelis-Menten Constant (K-m) for CYP3A4 and P-gp (CLint-CYP3A4 and Km-CYP3A4, CLint-P-gp and Km-P-gp). The impact of CYP3A4 and P-gp intracellular topography were not investigated since a well-stirred enterocyte is assumed within ADAM. An increased CLint-CYP3A4 resulted in a reduced F-G whereas an increase in CLint-P-gp resulted in a reduced F-a, but interestingly decreased F-G too. The reduction in F-G was limited to certain conditions and was modest. Non-linear relationships between various parameters determining the permeability (e. g. P-app, CLint-P-gp, and Km-P-gp) and gut wall metabolism (e. g. CLint-CYP3A4, Km-CYP3A4) resulted in disproportionate changes in F-G compared to the magnitude of singular effects. The results suggest that P-gp efflux decreases enterocytic drug concentration for drugs given at reasonably high dose which possess adequate passive apparent permeability (high P-app), by de-saturating CYP3A4 in the gut resulting in a lower F-G. However, these findings were observed only in a very limited area of the parameters space matching very few herapeutic drugs (a group with very high metabolism, high turn-over by efflux transporters and low F-a). The systematic approach in this study enabled us to recognise the combination of parameter values where the potential interplay between metabolising enzymes and efflux transporters is expected to be highest, using a realistic range of parameter values taken from an intensive literature search.

Place, publisher, year, edition, pages
2010. Vol. 11, no 9, 716-729 p.
Keyword [en]
BCS, BDDCS, CYP3A4, fraction absorbed, F-G, gut metabolism, P-glycoprotein, transporter, ADAM, Simcyp
National Category
Medical and Health Sciences
URN: urn:nbn:se:uu:diva-148138DOI: 10.2174/138920010794328913ISI: 000286873800002PubMedID: 21189140OAI: oai:DiVA.org:uu-148138DiVA: diva2:401439
Available from: 2011-03-02 Created: 2011-03-02 Last updated: 2013-04-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed
By organisation
Department of Pharmacy
In the same journal
Current drug metabolism
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 216 hits
ReferencesLink to record
Permanent link

Direct link