uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The electron density of Saturn's magnetosphere
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
Show others and affiliations
2009 (English)In: Annales Geophysicae, ISSN 0992-7689, E-ISSN 1432-0576, Vol. 27, no 7, p. 2971-2991Article in journal (Refereed) Published
Abstract [en]

We have investigated statistically the electron density below 5 cm(-3) in the magnetosphere of Saturn (7-80 R-S, Saturn radii) using 44 orbits of the floating potential data from the RPWS Langmuir probe (LP) onboard Cassini. The density distribution shows a clear dependence on the distance from the Saturnian rotation axis (root X-2 + Y-2) as well as on the distance from the equatorial plane (vertical bar Z vertical bar), indicating a disc-like structure. From the characteristics of the density distribution, we have identified three regions: the extension of the plasma disc, the magnetodisc region, and the lobe regions. The plasma disc region is at L<15, where L is the radial distance to the equatorial crossing of the dipole magnetic field line, and confined to vertical bar Z vertical bar <5 R-S. The magnetodisc is located beyond L=15, and its density has a large variability. The variability has quasi-periodic characteristics with a periodicity corresponding to the planetary rotation. For Z > 15 R-S, the magnetospheric density distribution becomes constant in Z. However, the density still varies quasi-periodically with the planetary rotation also in this region. In fact, the quasi-periodic variation has been observed all over the magnetosphere beyond L=15. The region above Z=15 R-S is identified as the lobe region. We also found that the magnetosphere can occasionally move latitudinally under the control of the density in the magnetosphere and the solar wind. From the empirical distributions of the electron densities obtained in this study, we have constructed an electron density model of the Saturnian nightside magnetosphere beyond 7 R-S. The obtained model can well reproduce the observed density distribution, and can thus be useful for magnetospheric modelling studies.

Place, publisher, year, edition, pages
2009. Vol. 27, no 7, p. 2971-2991
Keywords [en]
Magnetospheric physics, Magnetospheric configuration and dynamics, Planetary magnetospheres, Instruments and techniques
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-148297DOI: 10.5194/angeo-27-2971-2009ISI: 000268622700031OAI: oai:DiVA.org:uu-148297DiVA, id: diva2:401820
Available from: 2011-03-04 Created: 2011-03-04 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text
By organisation
Swedish Institute of Space Physics, Uppsala Division
In the same journal
Annales Geophysicae
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 385 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf