uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
First stars XII. Abundances in extremely metal-poor turnoff stars, and comparison with the giants
Show others and affiliations
2009 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 501, no 2, 519-530 p.Article in journal (Refereed) Published
Abstract [en]

Context. The detailed chemical abundances of extremely metal-poor (EMP) stars are key guides to understanding the early chemical evolution of the Galaxy. Most existing data, however, treat giant stars that may have experienced internal mixing later. Aims. We aim to compare the results for giants with new, accurate abundances for all observable elements in 18 EMP turno. stars. Methods. VLT/UVES spectra at R similar to 45 000 and S/N similar to 130 per pixel (lambda lambda 330-1000 nm) are analysed with OSMARCS model atmospheres and the TURBOSPECTRUM code to derive abundances for C, Mg, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Zn, Sr, and Ba. Results. For Ca, Ni, Sr, and Ba, we find excellent consistency with our earlier sample of EMP giants, at all metallicities. However, our abundances of C, Sc, Ti, Cr, Mn and Co are similar to 0.2 dex larger than in giants of similar metallicity. Mg and Si abundances are similar to 0.2 dex lower (the giant [Mg/Fe] values are slightly revised), while Zn is again similar to 0.4 dex higher than in giants of similar [Fe/H] (6 stars only). Conclusions. For C, the dwarf/giant discrepancy could possibly have an astrophysical cause, but for the other elements it must arise from shortcomings in the analysis. Approximate computations of granulation (3D) effects yield smaller corrections for giants than for dwarfs, but suggest that this is an unlikely explanation, except perhaps for C, Cr, and Mn. NLTE computations for Na and Al provide consistent abundances between dwarfs and giants, unlike the LTE results, and would be highly desirable for the other discrepant elements as well. Meanwhile, we recommend using the giant abundances as reference data for Galactic chemical evolution models.

Place, publisher, year, edition, pages
2009. Vol. 501, no 2, 519-530 p.
Keyword [en]
Galaxy: abundances, Galaxy: halo, Galaxy: evolution, stars: abundances, stars: population II, stars: supernovae: general
National Category
Physical Sciences
URN: urn:nbn:se:uu:diva-148313DOI: 10.1051/0004-6361/200810610ISI: 000268125300013OAI: oai:DiVA.org:uu-148313DiVA: diva2:402122
Available from: 2011-03-07 Created: 2011-03-04 Last updated: 2011-03-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
Department of Physics and Astronomy
In the same journal
Astronomy and Astrophysics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 188 hits
ReferencesLink to record
Permanent link

Direct link