uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Minimal Cost-Path for Path-Based Distances
Uppsala University, Interfaculty Units, Centre for Image Analysis. Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis.
Uppsala University, Interfaculty Units, Centre for Image Analysis. Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis.
Uppsala University, Interfaculty Units, Centre for Image Analysis. Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis.
2007 (English)In: Proceedings of 5th International Symposium on Image and Signal Processing and Analysis (ISPA 2007), 2007, 379-384 p.Conference paper, Published paper (Refereed)
Abstract [en]

Distance functions defined by the minimal cost-path using weights and neighbourhood sequences (n.s.) are considered for the constrained distance transform (CDT). The CDT is then used to find one minimal cost-path between two points. The behaviour of some path-based distance functions is analyzed and a new error function is introduced. It is concluded that the weighted n.s.-distance with two weights (3 x 3 neighbourhood) and the weighted distance with three weights (5 x 5 neighbourhood) have similar properties in terms of minimal cost-path computation, while the former is more efficient to compute.

Place, publisher, year, edition, pages
2007. 379-384 p.
National Category
Computer Vision and Robotics (Autonomous Systems)
Identifiers
URN: urn:nbn:se:uu:diva-12585DOI: doi:10.1109/ISPA.2007.4383723ISBN: 978-953-184-116-0 (print)OAI: oai:DiVA.org:uu-12585DiVA: diva2:40354
Available from: 2008-01-07 Created: 2008-01-07 Last updated: 2011-05-05
In thesis
1. Graph-based Methods for Interactive Image Segmentation
Open this publication in new window or tab >>Graph-based Methods for Interactive Image Segmentation
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The subject of digital image analysis deals with extracting relevant information from image data, stored in digital form in a computer. A fundamental problem in image analysis is image segmentation, i.e., the identification and separation of relevant objects and structures in an image. Accurate segmentation of objects of interest is often required before further processing and analysis can be performed.

Despite years of active research, fully automatic segmentation of arbitrary images remains an unsolved problem. Interactive, or semi-automatic, segmentation methods use human expert knowledge as additional input, thereby making the segmentation problem more tractable. The goal of interactive segmentation methods is to minimize the required user interaction time, while maintaining tight user control to guarantee the correctness of the results. Methods for interactive segmentation typically operate under one of two paradigms for user guidance: (1) Specification of pieces of the boundary of the desired object(s). (2) Specification of correct segmentation labels for a small subset of the image elements. These types of user input are referred to as boundary constraints and regional constraints, respectively.

This thesis concerns the development of methods for interactive segmentation, using a graph-theoretic approach. We view an image as an edge weighted graph, whose vertex set is the set of image elements, and whose edges are given by an adjacency relation among the image elements. Due to its discrete nature and mathematical simplicity, this graph based image representation lends itself well to the development of efficient, and provably correct, methods.

The contributions in this thesis may be summarized as follows:

  • Existing graph-based methods for interactive segmentation are modified to improve their performance on images with noisy or missing data, while maintaining a low computational cost.
  • Fuzzy techniques are utilized to obtain segmentations from which feature measurements can be made with increased precision.
  • A new paradigm for user guidance, that unifies and generalizes regional and boundary constraints, is proposed.

The practical utility of the proposed methods is illustrated with examples from the medical field.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2011. 61 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 813
Keyword
Digital image analysis, Interactive image segmentation, Fuzzy image segmentation, Image foresting transform, Graph labeling, Graph cuts
National Category
Computer Vision and Robotics (Autonomous Systems)
Research subject
Computerized Image Processing
Identifiers
urn:nbn:se:uu:diva-149261 (URN)978-91-554-8037-0 (ISBN)
Public defence
2011-05-06, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 10:15 (English)
Opponent
Supervisors
Available from: 2011-04-14 Created: 2011-03-16 Last updated: 2014-07-21Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full texthttp://doi.ieeecomputersociety.org/10.1109/ISPA.2007.4383723

Authority records BETA

Strand, RobinSvensson, Stina

Search in DiVA

By author/editor
Strand, RobinSvensson, Stina
By organisation
Centre for Image AnalysisComputerized Image Analysis
Computer Vision and Robotics (Autonomous Systems)

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 564 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf