uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Plasma transport along discrete auroral arcs and its contribution to the ionospheric plasma convection
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
Show others and affiliations
2008 (English)In: Annales Geophysicae, ISSN 0992-7689, E-ISSN 1432-0576, Vol. 26, no 11, 3279-3293 p.Article in journal (Refereed) Published
Abstract [en]

The role of intense high-altitude electric field (E-field) peaks for large-scale plasma convection is investigated with the help of Cluster E-field, B-field and density data. The study covers 32 E-field events between 4 and 7 R-E geocentric distance, with E-field magnitudes in the range 500 1000 mV/m when mapped to ionospheric altitude. We focus on E-field structures above the ionosphere that are typically coupled to discrete auroral arcs and their return current region. Connected to such E-field peaks are rapid plasma flows directed along the discrete arcs in opposite directions on each side of the arc. Nearly all the E-field events occur during active times. A strong dependence on different substorm phases is found: a majority of intense E-field events appearing during substorm expansion or maximum phase are located on the night-side oval, while most recovery events occur on the dusk-to-dayside part of the oval. For most expansion and maximum phase cases, the average background plasma flow is in the sunward direction. For a majority of recovery events, the flow is in the anti-sunward direction. The net plasma flux connected to a strong E-field peak is in two thirds of the cases in the same direction as the background plasma flow. However, in only one third of the cases the strong flux caused by an E-field peak makes an important contribution to the plasma transport within the boundary plasma sheet. For a majority of events, the area covered by rapid plasma flows above discrete arcs is too small to have an effect on the global convection. This questions the role of discrete auroral arcs as major driver of plasma convection.

Place, publisher, year, edition, pages
2008. Vol. 26, no 11, 3279-3293 p.
Keyword [en]
Ionosphere, Auroral ionosphere, Electric fields and currents, Planetary ionospheres
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-149290ISI: 000262409400008OAI: oai:DiVA.org:uu-149290DiVA: diva2:404500
Available from: 2011-03-17 Created: 2011-03-17 Last updated: 2011-03-17Bibliographically approved

Open Access in DiVA

No full text

By organisation
Swedish Institute of Space Physics, Uppsala Division
In the same journal
Annales Geophysicae
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 367 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf