uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Tailor-Made Modification of a Gold Surface for the Chemical Binding of a High-Activity [FeFe] Hydrogenase
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Photochemistry and Molecular Science, Molecular Biomimetics.
Show others and affiliations
2011 (English)In: European Journal of Inorganic Chemistry, ISSN 1434-1948, E-ISSN 1099-0682, no 7, 1138-1146 p.Article in journal (Refereed) Published
Abstract [en]

Hydrogenases are iron-sulfur proteins that catalyze hydrogen turnover in a wide range of microorganisms. Three different classes have been described, and among these [FeFe] hydrogenases are the most active in H-2 evolution. Hydrogenases are redox enzymes that have been shown to exchange electrons with graphite and modified noble metal electrodes. Making use of the latter, diffusible electron carriers are required to enable redox catalysis, as proteins do not specifically bind to the electrode surface. Diffusion-limited electron transfer can be replaced by electron injection into immobilized hydrogenase by binding the redox mediator to the electrode surface. Here, we present the synthesis and spectroelectrochemical characterization of 1-( 10-mercaptodecyl)-1'-benzyl-4,4'-bipyridinium dibromide (MBBP), which is used as redox-active linker. CrHydA1, the high-activity [FeFe] hydrogenase from Chlamydomonas reinhardtii, is immobilized on the linker-modified gold electrode. Each surface modification step is controlled in situ by surface-enhanced infrared absorption spectroscopy (SEIRAS). Functionality of the electrode-protein hybrid is demonstrated by recording the linker-supported current. The specific catalytic rate of hydrogen evolution by CrHydA1 (2.9 mu molH(2)min(-1)mg(-1) hydrogenase) promises a valuable approach for further optimization of this novel bioelectrical interface.

Place, publisher, year, edition, pages
2011. no 7, 1138-1146 p.
Keyword [en]
Hydrogen, Metalloenzymes, Immobilization, Electrochemistry, IR spectroscopy
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-150675DOI: 10.1002/ejic.201001190ISI: 000288099000026OAI: oai:DiVA.org:uu-150675DiVA: diva2:408269
Available from: 2011-04-04 Created: 2011-04-04 Last updated: 2011-12-13Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
Molecular Biomimetics
In the same journal
European Journal of Inorganic Chemistry
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 797 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf