uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the Feasibility of Nanocrystal Imaging Using Intense and Ultrashort X-ray Pulses
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics.
Show others and affiliations
2011 (English)In: ACS Nano, ISSN 1936-0851, Vol. 5, no 1, 139-146 p.Article in journal (Refereed) Published
Abstract [en]

Structural studies of biological macromolecules are severely limited by radiation damage. Traditional crystallography curbs the effects of damage by spreading damage over many copies of the molecule of interest in the crystal. X-ray lasers offer an additional opportunity for limiting damage by out-running damage processes with ultrashort and very intense X-ray pulses Such pulses may allow the imaging of single molecules, clusters; Or nanoparticles: Coherent flash Imaging Will also open up new avenues for structural studies on nano- and microcrystalline substances. This paper addresses the theoretical potentials and limitations of nanocrystallography with extremely intense coherent X-ray pulses. We use urea nanocrystals as a model for generic biological substances and simulate the primary and secondary ionization dynamics in the crystalline sample. The results establish conditions for ultrafast single shot nanocrystallography diffraction experiments as a function of X-ray fluence, pulse duration, and the size of nanocrystals. Nanocrystallography using ultrafast X-ray pulses has the potential to open up a new route in protein crystallography to solve atomic structures of many systems that remain Inaccessible using conventional X-ray sources.

Place, publisher, year, edition, pages
2011. Vol. 5, no 1, 139-146 p.
Keyword [en]
X-ray free electron laser, nanocrystallography, radiation damage, molecular dynamics, coherent diffraction imaging
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:uu:diva-150777DOI: 10.1021/nn1020693ISI: 000286487300018OAI: oai:DiVA.org:uu-150777DiVA: diva2:408701
Available from: 2011-04-06 Created: 2011-04-06 Last updated: 2016-04-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Caleman, CarlMaia, Filipe R. N. C.Timneanu, Nicusor

Search in DiVA

By author/editor
Caleman, CarlMaia, Filipe R. N. C.Timneanu, Nicusor
By organisation
Molecular biophysicsComputational and Systems Biology
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 442 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf