uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Mars solar wind interaction: Formation of the Martian corona and atmospheric loss to space
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
Show others and affiliations
2007 (English)In: Journal of Geophysical Research, ISSN 0148-0227, Vol. 112, no E9, E09009- p.Article, review/survey (Refereed) Published
Abstract [en]

A three- dimensional ( 3- D) atomic oxygen corona of Mars is computed for periods of low and high solar activities. The thermal atomic oxygen corona is derived from a collisionless Chamberlain approach, whereas the nonthermal atomic oxygen corona is derived from Monte Carlo simulations. The two main sources of hot exospheric oxygen atoms at Mars are the dissociative recombination of O-2(+) between 120 and 300 km and the sputtering of the Martian atmosphere by incident O+ pickup ions. The reimpacting and escaping fluxes of pickup ions are derived from a 3- D hybrid model describing the interaction of the solar wind with our computed Martian oxygen exosphere. In this work it is shown that the role of the sputtering crucially depends on an accurate description of the Martian corona as well as of its interaction with the solar wind. The sputtering contribution to the total oxygen escape is smaller by one order of magnitude than the contribution due to the dissociative recombination. The neutral escape is dominant at both solar activities ( 1 x 10(25) s(-1) for low solar activity and 4 x 10(25) s(-1) for high solar activity), and the ion escape flux is estimated to be equal to 2 x 10(23) s(-1) at low solar activity and to 3.4 x 10(24) s(-1) at high solar activity. This work illustrates one more time the strong dependency of these loss rates on solar conditions. It underlines the difficulty of extrapolating the present measured loss rates to the past solar conditions without a better theoretical and observational knowledge of this dependency.

Place, publisher, year, edition, pages
2007. Vol. 112, no E9, E09009- p.
National Category
Physical Sciences
URN: urn:nbn:se:uu:diva-150940DOI: 10.1029/2007JE002915ISI: 000249853800001OAI: oai:DiVA.org:uu-150940DiVA: diva2:409426
Available from: 2011-04-08 Created: 2011-04-08 Last updated: 2011-04-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
Swedish Institute of Space Physics, Uppsala Division
In the same journal
Journal of Geophysical Research
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 189 hits
ReferencesLink to record
Permanent link

Direct link