uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Can phylogenetic type predict resistance development?
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology.
2011 (English)In: Journal of Antimicrobial Chemotherapy, ISSN 0305-7453, E-ISSN 1460-2091, Vol. 66, no 4, 778-787 p.Article in journal (Refereed) Published
Abstract [en]

Objectives: To determine whether phylogenetic type is associated with the development of multidrug resistance to antibiotics. Methods: Urinary tract infection (UTI) isolates from three hospitals in Pakistan were collected over a period of 10 months, and analysed in terms of causative bacterial species and drug susceptibility. Results: Multidrug resistance was widespread and resistance frequencies were > 50% for several of the most commonly used antibiotics, including ciprofloxacin and third-generation cephalosporins for Escherichia coli isolates. The great majority of E. coli isolates remained susceptible to meropenem and fosfomycin. Sixty E. coli isolates were analysed in detail to determine correlations between resistance phenotypes and genotypes, mutation rates and phylogenetic group. Most isolates had elevated mutation rates, suggesting this was being selected. The majority of ciprofloxacin-resistant isolates carried a specific set of mutations in the quinolone resistance-determining region of gyrA and parC (S83L, D87N, S80I and E84V). In addition, 67% of the ciprofloxacin-resistant E. coli isolates carried one or more horizontally transmissible determinants of resistance to ciprofloxacin, including aac(6')-Ib-cr, qepA, qnrA and qnrB. There was a significant correlation between resistance to third-generation cephalosporins, being an extended-spectrum beta-lactamase producer, being resistant to ciprofloxacin and belonging to phylogenetic group B2. Conclusions: The data suggest that features of the bacterial genotype might facilitate the development of multidrug resistance in particular lineages. Better understanding of the mechanistic basis for correlations between drug resistance and genotype could potentially be exploited to develop molecular tools for the prediction of resistance development.

Place, publisher, year, edition, pages
2011. Vol. 66, no 4, 778-787 p.
Keyword [en]
fluoroquinolones, ESBLs, antibiotic resistance
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:uu:diva-151671DOI: 10.1093/jac/dkq505ISI: 000288551300015OAI: oai:DiVA.org:uu-151671DiVA: diva2:410862
Available from: 2011-04-15 Created: 2011-04-15 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Hughes, Diarmaid

Search in DiVA

By author/editor
Hughes, Diarmaid
By organisation
Department of Cell and Molecular Biology
In the same journal
Journal of Antimicrobial Chemotherapy
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 660 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf