uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Calpain-10 interacts with plasma saturated fatty acid concentrations to influence insulin resistance in individuals with the metabolic syndrome
Show others and affiliations
2011 (English)In: American Journal of Clinical Nutrition, ISSN 0002-9165, E-ISSN 1938-3207, Vol. 93, no 5, 1136-1141 p.Article in journal (Refereed) Published
Abstract [en]

Background: Calpain-10 protein (intracellular Ca2+-dependent cysteine protease) may play a role in glucose metabolism, pancreatic beta cell function, and regulation of thermogenesis. Several CAPN10 polymorphic sites have been studied for their potential use as risk markers for type 2 diabetes and the metabolic syndrome (MetS). Fatty acids are key metabolic regulators that may interact with genetic factors and influence glucose metabolism. Objective: The objective was to examine whether the genetic variability at the CAPN10 gene locus is associated with the degree of insulin resistance and plasma fatty acid concentrations in subjects with MetS. Design: The insulin sensitivity index, glucose effectiveness, insulin resistance [homeostasis model assessment of insulin resistance (HOMA-IR)], insulin secretion (disposition index, acute insulin response, and HOMA of beta cell function), plasma fatty acid composition, and 5 CAPN10 single nucleotide polymorphisms (SNPs) were determined in a cross-sectional analysis of 452 subjects with MetS participating in the LIPGENE dietary intervention cohort. Results: The rs2953171 SNP interacted with plasma total saturated fatty acid (SFA) concentrations, which were significantly associated with insulin sensitivity (P < 0.031 for fasting insulin, P < 0.028 for HOMA-IR, and P < 0.012 for glucose effectiveness). The G/G genotype was associated with lower fasting insulin concentrations, lower HOMA-IR, and higher glucose effectiveness in subjects with low SFA concentrations (below the median) than in subjects with the minor A allele (G/A and A/A). In contrast, subjects with the G/G allele with the highest SFA concentrations (above the median) had higher fasting insulin and HOMA-IR values and lower glucose effectiveness than did subjects with the A allele. Conclusion: The rs2953171 polymorphism at the CAPN10 gene locus may influence insulin sensitivity by interacting with the plasma fatty acid composition in subjects with MetS. This trial was registered at clinicaltrials. gov as NCT00429195.

Place, publisher, year, edition, pages
2011. Vol. 93, no 5, 1136-1141 p.
National Category
Medical and Health Sciences
URN: urn:nbn:se:uu:diva-153305DOI: 10.3945/ajcn.110.010512ISI: 000289770500030PubMedID: 21389182OAI: oai:DiVA.org:uu-153305DiVA: diva2:415988
Available from: 2011-05-10 Created: 2011-05-10 Last updated: 2011-05-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed
By organisation
Clinical Nutrition and Metabolism
In the same journal
American Journal of Clinical Nutrition
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 162 hits
ReferencesLink to record
Permanent link

Direct link