uu.seUppsala University Publications

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Ground state alternative for p-Laplacian with potential termPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2007 (English)In: Calculus of Variations and Partial Differential Equations, ISSN 0944-2669, E-ISSN 1432-0835, Vol. 28, no 2, 179-201 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2007. Vol. 28, no 2, 179-201 p.
##### Keyword [en]

quasilinear elliptic operator, p-Laplacian, ground state, positive solutions, green function, isolated singularity
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:uu:diva-153341DOI: 10.1007/s00526-006-0040-2ISI: 000242295000003OAI: oai:DiVA.org:uu-153341DiVA: diva2:416319
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt376",{id:"formSmash:j_idt376",widgetVar:"widget_formSmash_j_idt376",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt382",{id:"formSmash:j_idt382",widgetVar:"widget_formSmash_j_idt382",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt388",{id:"formSmash:j_idt388",widgetVar:"widget_formSmash_j_idt388",multiple:true});
Available from: 2011-05-11 Created: 2011-05-11 Last updated: 2011-05-11Bibliographically approved

Let Omega be a domain in R-d, d >= 2, and 1 < p < infinity. Fix V. is an element of L-loc(infinity)(Omega). Consider the functional Q and its G teaux derivative Q' given by Q(u) := integral(vertical bar del u vertical bar(p) + V vertical bar u vertical bar(p)) dx, 1/p Q'(u) := - del. (vertical bar del u vertical bar(p-2)del u) + V vertical bar u vertical bar(p-2)u. If Q >= 0 on C-0(infinity)(Omega), then either there is a positive continuous function W such that integral W vertical bar u vertical bar(p) dx = Q'(u) for all u is an element of C-0(infinity) (Omega), or there is a sequence u(k) is an element of C-0(infinity)(Omega) and a function v > 0 satisfying Q'(v) = 0, such that Q(u(k)) -> 0, and u(k) -> v in L-loc(p)(Omega). In the latter case, v is ( up to a multiplicative constant) the unique positive supersolution of the equation Q'(u) = 0 in Omega, and one has for Q an inequality of Poincare type: there exists a positive continuous function W such that for every psi is an element of C-0(infinity) (Omega) satisfying integral psi v dx not equal 0 there exists a constant C > 0 such that C-1 integral W vertical bar u vertical bar(p) dx <= Q(u) + C vertical bar integral u psi dx vertical bar(p) for all u is an element of C-0(infinity) (Omega). As a consequence, we prove positivity properties for the quasilinear operator Q' that are known to hold for general subcritical resp. critical second- order linear elliptic operators.

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1101",{id:"formSmash:lower:j_idt1101",widgetVar:"widget_formSmash_lower_j_idt1101",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1102_j_idt1104",{id:"formSmash:lower:j_idt1102:j_idt1104",widgetVar:"widget_formSmash_lower_j_idt1102_j_idt1104",target:"formSmash:lower:j_idt1102:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});