uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Transverse Conductance of DNA Nucleotides in a Graphene Nanogap from First Principles
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Show others and affiliations
2011 (English)In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 11, no 5, 1941-1945 p.Article in journal (Refereed) Published
Abstract [en]

The fabrication of nanopores in atomically thin graphene has recently been achieved, and translocation of DNA has been demonstrated. Taken together with an earlier proposal to use graphene nanogaps for the purpose of DNA sequencing, this approach can resolve the technical problem of achieving single-base resolution in electronic nucleobase detection. We have theoretically evaluated the performance of a graphene nanogap setup for the purpose of whole-genome sequencing, by employing density functional theory and the nonequilibrium Green's function method to investigate the transverse conductance properties of nucleotides inside the gap. In particular, we determined the electrical tunneling current variation at finite bias due to changes in the nucleotides orientation and lateral position. Although the resulting tunneling current is found to fluctuate over several orders of magnitude, a distinction between the four DNA bases appears possible, thus ranking the approach promising for rapid whole-genome sequencing applications.

Place, publisher, year, edition, pages
2011. Vol. 11, no 5, 1941-1945 p.
Keyword [en]
DNA sequencing, graphene, nanogap, ab initio, electronic transport, molecular electronics
National Category
Atom and Molecular Physics and Optics
Research subject
Physics with spec. in Atomic, Molecular and Condensed Matter Physics
Identifiers
URN: urn:nbn:se:uu:diva-153682DOI: 10.1021/nl200147xISI: 000290373000015PubMedID: 21495701OAI: oai:DiVA.org:uu-153682DiVA: diva2:417451
Projects
KoFF U3MEC
Funder
Swedish Research Council, 113501971
Available from: 2011-05-18 Created: 2011-05-17 Last updated: 2017-12-11Bibliographically approved
In thesis
1. Molecular Electronics: Insight from Ab-Initio Transport Simulations
Open this publication in new window or tab >>Molecular Electronics: Insight from Ab-Initio Transport Simulations
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis presents the theoretical studies of electronic transport in molecular electronic devices. Such devices have been proposed and investigated as a promising new approach that complements conventional silicon-based electronics. To design and fabricate future nanoelectronic devices, it is essential to understand the conduction mechanism at a molecular or atomic level. Our approach is based on the non-equilibrium Green's function method (NEGF) combined with density functional theory (DFT). We apply the method to study the electronic transport properties of two-probe systems consisting of molecules or atomic wires sandwiched between leads. A few molecular electronic devices are characterized; namely, conducting molecular wires, molecular switches and molecular recognition sensors. The considered applications are interconnection of different nanoelectronic units with cumulene molecular wires; adding switching functionality to the molecular connectors by applying stress to the CNT-cumulene-CNT junction or by introducing phthalocyanine unit; sensing of individual nucleotides, e.g., for DNA sequencing applications. The obtained results provide useful insights into the electron transport properties of molecules. Several interesting and significant features are analyzed and explained in particular such as, level pinning, negative differential resistance, interfering of conducting channels etc.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2011. 67 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 875
Keyword
Molecular Electronics, Ab Initio, DNA Sequencing, Nanoscience, Graphene
National Category
Condensed Matter Physics
Research subject
Physics with spec. in Atomic, Molecular and Condensed Matter Physics
Identifiers
urn:nbn:se:uu:diva-160474 (URN)978-91-554-8208-4 (ISBN)
Public defence
2011-12-08, Å80101, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 10:15 (English)
Opponent
Supervisors
Available from: 2011-11-17 Created: 2011-10-24 Last updated: 2014-01-27Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedpreprint

Authority records BETA

Grigoriev, AntonAhuja, RajeevScheicher, Ralph H.

Search in DiVA

By author/editor
Grigoriev, AntonAhuja, RajeevScheicher, Ralph H.
By organisation
Materials Theory
In the same journal
Nano letters (Print)
Atom and Molecular Physics and Optics

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 402 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf