uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Processes influencing model-data mismatch in drought-stressed, fire-disturbed eddy flux sites
Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, LUVAL.
2011 (English)In: Journal of Geophysical Research, ISSN 0148-0227, E-ISSN 2156-2202, Vol. 116, G02008- p.Article in journal (Refereed) Published
Abstract [en]

Semiarid forests are very sensitive to climatic change and among the most difficult ecosystems to accurately model. We tested the performance of the Biome-BGC model against eddy flux data taken from young (years 2004-2008), mature (years 2002-2008), and old-growth (year 2000) ponderosa pine stands at Metolius, Oregon, and subsequently examined several potential causes for model-data mismatch. We used the Generalized Likelihood Uncertainty Estimation methodology, which involved 500,000 model runs for each stand (1,500,000 total). Each simulation was run with randomly generated parameter values from a uniform distribution based on published parameter ranges, resulting in modeled estimates of net ecosystem CO2 exchange (NEE) that were compared to measured eddy flux data. Simulations for the young stand exhibited the highest level of performance, though they overestimated ecosystem C accumulation (-NEE) 99% of the time. Among the simulations for the mature and old-growth stands, 100% and 99% of the simulations underestimated ecosystem C accumulation. One obvious area of model-data mismatch is soil moisture, which was overestimated by the model in the young and old-growth stands yet underestimated in the mature stand. However, modeled estimates of soil water content and associated water deficits did not appear to be the primary cause of model-data mismatch; our analysis indicated that gross primary production can be accurately modeled even if soil moisture content is not. Instead, difficulties in adequately modeling ecosystem respiration, mainly autotrophic respiration, appeared to be the fundamental cause of model-data mismatch.

Place, publisher, year, edition, pages
2011. Vol. 116, G02008- p.
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:uu:diva-153961DOI: 10.1029/2009JG001146ISI: 000290414300001OAI: oai:DiVA.org:uu-153961DiVA: diva2:418521
Available from: 2011-05-23 Created: 2011-05-23 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
LUVAL
In the same journal
Journal of Geophysical Research
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 382 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf