uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Towards a Better Prediction of Peak Concentration, Volume of Distribution and Half-Life after Oral Drug Administration in Man, Using Allometry
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy.
Show others and affiliations
2011 (English)In: Clinical Pharmacokinetics, ISSN 0312-5963, Vol. 50, no 5, 307-318 p.Article in journal (Refereed) Published
Abstract [en]

Background: it is imperative that new drugs demonstrate adequate pharmacokinetic properties, allowing an optimal safety margin and convenient dosing regimens in clinical practice, which then lead to better patient compliance. Such pharmacokinetic properties include suitable peak (maximum) plasma drug concentration (C-max), area under the plasma concentration-time curve (AUC) and a suitable half-life (t(1/4)). The C-max and t(1/2) following oral drug administration are functions of the oral clearance (CL/F) and apparent volume of distribution during the terminal phase by the oral route (V-z/F), each of which may be predicted and combined to estimate C-max and t(1/4). Allometric scaling is a widely used methodology in the pharmaceutical industry to predict human pharmacokinetic parameters such as clearance and volume of distribution. In our previous published work, we have evaluated the use of allometry for prediction of CL/F and AUC. In this paper we describe the evaluation of different allometric scaling approaches for the prediction of C-max, V-z/F and t(1/2) after oral drug administration in man. Methods: Twenty-nine compounds developed at Janssen Research and Development (a division of Janssen Pharmaceutica NV), covering a wide range of physicochemical and pharmacokinetic properties, were selected. The C,, following oral dosing of a compound was predicted using (i) simple allometry alone; (ii) simple allometry along with correction factors such as plasma protein binding (PPB), maximum life-span potential or brain weight (reverse rule of exponents, unbound C-max approach); and (iii) an indirect approach using allometrically predicted CL/F and V-z/F and absorption rate constant (k(a)). The k(a) was estimated from (i) in vivo pharmacokinetic experiments in preclinical species; and (ii) predicted effective permeability in man Weir), using a Caco-2 permeability assay. The V-z/F was predicted using allometric scaling with or without PPB correction. The t(1/2) was estimated from the allometrically predicted parameters CL/F and V-z/F. Predictions were deemed adequate when errors were within a 2-fold range. Results: C-max and t(1/2), could be predicted within a 2-fold error range for 59% and 66% of the tested compounds, respectively, using allometrically predicted CL/F and V-z/F. The best predictions for Cif, were obtained when K-a values were calculated from the Caco-2 permeability assay. The V-z/F was predicted within a 2-fold error range for 72% of compounds when PPB correction was applied as the correction factor for scaling. Conclusions: We conclude that (i) C-max and t(1/2), are best predicted by indirect scaling approaches (using allometrically predicted CL/F and V-z/F and accounting for ka derived from permeability assay); and (ii) the PPB is an important correction factor for the prediction of V-z/F by using allometric scaling. Furthermore, additional work is warranted to understand the mechanisms governing the processes underlying determination of C-max so that the empirical approaches can be fine-tuned further.

Place, publisher, year, edition, pages
2011. Vol. 50, no 5, 307-318 p.
Keyword [en]
Dose-prediction, Metabolism, Pharmacokinetic-modelling, Pharmacokinetics
National Category
Pharmaceutical Sciences
URN: urn:nbn:se:uu:diva-154115DOI: 10.2165/11539250-000000000-00000ISI: 000290182100003PubMedID: 21456631OAI: oai:DiVA.org:uu-154115DiVA: diva2:419363
Available from: 2011-05-26 Created: 2011-05-26 Last updated: 2011-05-26Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed
By organisation
Department of Pharmacy
In the same journal
Clinical Pharmacokinetics
Pharmaceutical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 178 hits
ReferencesLink to record
Permanent link

Direct link