uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Further developments in molecular sex assignment: a blind test of 18th and 19th century human skeletons
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology.
2011 (English)In: Journal of Archaeological Science, ISSN 0305-4403, E-ISSN 1095-9238, Vol. 38, no 6, 1326-1330 p.Article in journal (Refereed) Published
Abstract [en]

The identification of sex in human remains recovered from archaeological locations is important in order to understand the social and biological structure of past societies, and to reconstruct past population demographic events. Sex determination is usually based on morphological traits of the skeletons, with the drawback that most methods do not apply to juveniles and require well preserved remains. In cases where morphological methods cannot be used, or are ambiguous, methods of molecular sexing systems are an alternative. In this methodological study we tested and validated the accuracy and usefulness of a molecular sexing method based on the amelogenin gene using pyrosequencing. We did this in a double blind study of documented 18th and 19th century human remains.

Place, publisher, year, edition, pages
2011. Vol. 38, no 6, 1326-1330 p.
Keyword [en]
Molecular sexing, Human, Ancient DNA, Pyrosequencing
National Category
Biological Sciences
URN: urn:nbn:se:uu:diva-154599DOI: 10.1016/j.jas.2011.01.009ISI: 000290420300016OAI: oai:DiVA.org:uu-154599DiVA: diva2:421550
Available from: 2011-06-09 Created: 2011-06-08 Last updated: 2014-04-29Bibliographically approved
In thesis
1. Archaeological Genetics - Approaching Human History through DNA Analysis
Open this publication in new window or tab >>Archaeological Genetics - Approaching Human History through DNA Analysis
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

There are a variety of archaeological questions, which are difficult to assess by traditional archaeological methods. Similarly, there are genetic and population genetic questions about human evolution and migration that are difficult to assess by studying modern day genetic variation. Archaeological genetics can directly study the archaeological remains, allowing human history to be explored by means of genetics, and genetics to be expanded into historical and pre-historical times. Examples of archaeological questions that can be resolved by genetics are determining biological sex on archaeological remains and exploring the kinship or groups buried in close proximity. Another example is one of the most important events in human prehistory – the transition from a hunter-gatherer lifestyle to farming - was driven through the diffusion of ideas or with migrating farmers. Molecular genetics has the potential to contribute in answering all these questions as well as others of similar nature. However, it is essential that the pitfalls of ancient DNA, namely fragmentation, damage and contamination are handled during data collection and data analysis.

Analyses of ancient DNA presented in this thesis are based on both mitochondrial DNA and nuclear DNA through the study of single nuclear polymorphisms (SNPs). I used pyrosequencing assays in order to identify the biological sex of archaeological remains as well as verifying if fragmented remains were human or from animal sources. I used a clonal assay approach in order to retrieve sequences for the HVRI of a small family-like burial constellation from the Viking age. By the use of low coverage shotgun sequencing I retrieved sequence data from 13 crew members from the 17th century Swedish man-of-war Kronan. This data was used to determine the ancestry of the crew, which in some cases was speculated to be of non-Scandinavian or non-European origin. However, I demonstrate that all individuals were of European ancestry. Finally, I retrieved sequence data from a Neolithic farmer from the Iberian Peninsula, which added one more facet of information in exploring the Neolithization process of Europe. The Neolithic Iberian individual was genetically similar to Scandinavian Neolithic farmers, indicating that the genetic variation of prehistoric Europe correlated with subsistence mode rather than with geography.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2014. 61 p.
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1101
ancient DNA, pyrosequencing, molecular genetics, aDNA, neolithization, evolutionary genetics, mtDNA, viking age, archaeological genetics, genetik, evolutionsgenetik, naturvetenskap, neolitisering, vikingatid, arkeologisk genetik
National Category
Evolutionary Biology Genetics
Research subject
Biology with specialization in Evolutionary Genetics
urn:nbn:se:uu:diva-211156 (URN)978-91-554-8816-1 (ISBN)
Public defence
2014-03-21, Ekmansalen, EBC, Norbyvägen 14, Uppsala, 13:00 (English)
Available from: 2014-03-13 Created: 2013-11-20 Last updated: 2014-04-29

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
Evolutionary Biology
In the same journal
Journal of Archaeological Science
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 235 hits
ReferencesLink to record
Permanent link

Direct link