uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
There is no slowing of motility speed with increased body size in rat, human, horse and rhinoceros independent on temperature and skeletal muscle myosin isoform
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Clinical Neurophysiology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Clinical Neurophysiology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Clinical Neurophysiology.
2011 (English)In: Acta Physiologica, ISSN 1748-1708, E-ISSN 1748-1716, Vol. 202, no 4, 671-681 p.Article in journal (Refereed) Published
Abstract [en]

Aim:  The predictions of scaling of skeletal muscle shortening velocity made by A.V. Hill 60-years ago have proven to be remarkably accurate at the cellular level. The current investigation looks to extend the study of scaling of contractile speed to the level of the molecular motor protein myosin at both physiological and unphysiological low temperatures. Methods:  A single muscle cell in vitro motility assay to test myosin function, i.e. myosin extracted from short single muscle fibre segments, was used in four species representing a 5 500-fold difference in body mass (rat, man, horse and rhinoceros) at temperatures ranging from 15 to 35 °C. Results:  The in vitro motility speed increased as the temperature of the assay increased, but a more profound effect was observed on the slower isoforms, narrowing the relative differences between fast and slow myosin heavy chain (MyHC) isoforms at physiological temperature in all species. The in vitro motility speed varied according to MyHC isoform within each species: I < IIa < IIx < IIb, but the expected scaling relationship within orthologous myosin isoforms was not observed at any temperature. Conclusion:  The scaling effect of body size and limb length on shortening velocity at the muscle fibre level, i.e. the decreasing shortening velocity associated with increasing body weight and limb length, was not confirmed at the motor protein level when including mammals of very large size. Thus, other factors than myosin structure and function appear to cause this scaling effect and thin filament isoform expression or myofilament lattice spacing are forwarded as alternative underlying factors.

Place, publisher, year, edition, pages
2011. Vol. 202, no 4, 671-681 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-154672DOI: 10.1111/j.1748-1716.2011.02292.xPubMedID: 21554558OAI: oai:DiVA.org:uu-154672DiVA: diva2:421585
Available from: 2011-06-09 Created: 2011-06-09 Last updated: 2013-03-15Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed
By organisation
Clinical Neurophysiology
In the same journal
Acta Physiologica
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 347 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf