uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Influence of Water on the Electronic: and Molecular Surface Structures of Ru-Dyes at Nanostructured TiO2
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry, Structural Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Physical and Analytical Chemistry, Physical Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Surface and Interface Science.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Surface and Interface Science.
Show others and affiliations
2011 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 115, no 24, 11996-12004 p.Article in journal (Refereed) Published
Abstract [en]

The influence of water on the surface electronic and molecular properties of three Ru-dyes adsorbed at nanostructured TiO2 was investigated using photoelectron spectroscopy (PES). The dyes investigated were the Ru(dcbpy)(2)(NCS)(2) in its acid (N3) and in its 2-fold deprotonated form (N719) as well as a similar dye (Z-907) containing the hydrophobic ligand 4,4'-dinonyl-2,2'-bipyridine. Trends in surface structures depending on water exposure were followed for the three dyes. The results showed that the hydrophobic chains of the Z-907 dye effectively inhibit surface reorganization while large changes in surface electronic and molecular structure were observed for the N3 and N719 molecular layers. Specifically, large effects involving the thiocyanate ligands were detected, and the S2p and N Is core level spectra indicate that the changes involve mixing of only two dominating surface configurations. Moreover, the PES results also showed water-induced changes in the energy level matching between the dye and the TiO2, and water induced desorption of the TBA(+) counterion. Basic photoelectrochemical trends depending on water exposure to dye-sensitized solar cell systems were also verified.

Place, publisher, year, edition, pages
2011. Vol. 115, no 24, 11996-12004 p.
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:uu:diva-155932DOI: 10.1021/jp1076609ISI: 000291709600016OAI: oai:DiVA.org:uu-155932DiVA: diva2:429482
Available from: 2011-07-04 Created: 2011-07-04 Last updated: 2017-12-11Bibliographically approved
In thesis
1. Electronic Structures and Energy Level Alignment in Mesoscopic Solar Cells: A Hard and Soft X-ray Photoelectron Spectroscopy Study
Open this publication in new window or tab >>Electronic Structures and Energy Level Alignment in Mesoscopic Solar Cells: A Hard and Soft X-ray Photoelectron Spectroscopy Study
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Photoelectron spectroscopy is an experimental method to study the electronic structure in matter. In this thesis, a combination of soft and hard X-ray based photoelectron spectroscopy has been used to obtain atomic level understanding of electronic structures and energy level alignments in mesoscopic solar cells. The thesis describes how the method can be varied between being surface and bulk sensitive and how to follow the structure linked to particular elements. The results were discussed with respect to the material function in mesoscopic solar cell configurations.

The heart of a solar cell is the charge separation of photoexcited electrons and holes, and in a mesoscopic solar cell, this occurs at interfaces between different materials. Understanding the energy level alignment between the materials is important for developing the function of the device. In this work, it is shown that photoelectron spectroscopy can be used to experimentally follow the energy level alignment at interfaces such as TiO2/metal sulfide/polymer, as well as TiO2/perovskite.

The electronic structures of two perovskite materials, CH3NH3PbI3 and CH3NH3PbBr3 were characterized by photoelectron spectroscopy and the results were discussed with support from quantum chemical calculations. The outermost levels consisted mainly of lead and halide orbitals and due to a relatively higher cross section for heavier elements, hard X-ray excitation was shown useful to study the position as well as the orbital character of the valence band edge.

Modifications of the energy level positions can be followed by core level shifts. Such studies showed that a commonly used additive in mesoscopic solar cells, Li-TFSI, affected molecular hole conductors in the same way as a p-dopant. A more controlled doping can also be achieved by redox active dopants such as Co(+III) complexes and can be studied quantitatively with photoelectron spectroscopy methods.

Hard X-rays allow studies of hidden interfaces, which were used to follow the oxidation of Ti in stacks of thin films for conducting glass. By the use of soft X-rays, the interface structure and bonding of dye molecules to mesoporous TiO2 or ZnO could be studied in detail. A combination of the two methods can be used to obtain a depth profiling of the sample. 

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2014. 87 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1135
Keyword
Photoelectron spectroscopy, HAXPES, PES, XPS, electronic structure, energy level alignment, mesoscopic solar cell, hole conductor, perovskite, dye-sensitized, semiconductor-sensitized, TiO2, ZnO, spiro-OMeTAD, P3HT, DEH, metal sulfide, Li-TFSI, Co(+III) complex
National Category
Atom and Molecular Physics and Optics
Research subject
Physics with spec. in Atomic, Molecular and Condensed Matter Physics
Identifiers
urn:nbn:se:uu:diva-221450 (URN)978-91-554-8921-2 (ISBN)
Public defence
2014-05-23, Polhemsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 10:15 (English)
Opponent
Supervisors
Available from: 2014-04-29 Created: 2014-03-31 Last updated: 2014-06-30

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Rensmo, Håkan

Search in DiVA

By author/editor
Rensmo, Håkan
By organisation
Structural ChemistryPhysical ChemistrySurface and Interface Science
In the same journal
The Journal of Physical Chemistry C
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1067 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf