uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Chemical Chaperones Protect Epidermolysis Bullosa Simplex Keratinocytes from Heat Stress-Induced Keratin Aggregation: Involvement of Heat Shock Proteins and MAP Kinases
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Dermatology and Venereology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Dermatology and Venereology.
Show others and affiliations
2011 (English)In: Journal of Investigative Dermatology, ISSN 0022-202X, E-ISSN 1523-1747, Vol. 131, no 8, 1684-1691 p.Article in journal (Refereed) Published
Abstract [en]

Epidermolysis bullosa simplex (EBS) is a blistering skin disease caused by mutations in keratin genes (KRT5 or KRT14), with no existing therapies. Aggregates of misfolded mutant keratins are seen in cultured keratinocytes from severe EBS patients. In other protein-folding disorders, involvement of molecular chaperones and the ubiquitin-proteasome system may modify disease severity. In this study, the effects of heat stress on keratin aggregation in immortalized cells from two patients with EBS (KRT5) and a healthy control were examined with and without addition of various test compounds. Heat-induced (43 °C, 30 minutes) aggregates were observed in all cell lines, the amount of which correlated with the donor phenotype. In EBS cells pre-exposed to proteasome inhibitor, MG132, and p38-mitogen-activated protein kinase (MAPK) inhibitor, SB203580, the proportion of aggregate-positive cells increased, suggesting a role of proteasomes and phosphorylation in removing mutated keratin. In contrast, aggregates were reduced by pretreatment with two chemical chaperones, trimethylamine N-oxide (TMAO) and 4-phenylbutyrate (4-PBA). TMAO also modulated stress-induced p38/c-jun N-terminal kinase (JNK) activation and expression of heat shock protein (HSPA1A), the latter of which colocalized with phosphorylated keratin 5 in EBS cells. Taken together, our findings suggest therapeutic targets for EBS and other keratinopathies.

Place, publisher, year, edition, pages
2011. Vol. 131, no 8, 1684-1691 p.
National Category
Dermatology and Venereal Diseases
Identifiers
URN: urn:nbn:se:uu:diva-156501DOI: 10.1038/jid.2011.93ISI: 000292731100017PubMedID: 21490615OAI: oai:DiVA.org:uu-156501DiVA: diva2:431812
Available from: 2011-07-26 Created: 2011-07-26 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed
By organisation
Dermatology and Venereology
In the same journal
Journal of Investigative Dermatology
Dermatology and Venereal Diseases

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 359 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf