uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
High affinity interaction between a synthetic, highly negatively charged pentasaccharide and alpha- or beta-antithrombin is predominantly due to nonionic interactions
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
2007 (English)In: Biochemistry, ISSN 0006-2960, E-ISSN 1520-4995, Vol. 46, no 11, 3378-3384 p.Article in journal (Refereed) Published
Abstract [en]

Idraparinux is a synthetic O-sulfated, O-methylated pentasaccharide that binds tightly to antithrombin (AT) and thereby specifically and efficiently induces the inactivation of the procoagulant protease, factor Xa. In this study, the affinity and kinetics of the interaction of this high-affinity pentasaccharide with α- and β-AT were compared with those of a synthetic pentasaccharide comprising the natural AT-binding sequence of heparin. Dissociation equilibrium constants, Kd, for the interactions of Idraparinux with α- and β-AT were approximately 0.4 and 0.1 nM, respectively, corresponding to an over 100-fold enhancement in affinity compared with that of the normal pentasaccharide. This large enhancement was due to a 400-fold tighter conformationally activated complex formed in the second binding step, whereas the encounter complex established in the first step was 4-fold weaker. The high-affinity and normal pentasaccharides both made a total of four ionic interactions with AT, although the high-affinity saccharide only established one ionic interaction in the first binding step and was compensated by three in the second step, whereas the normal pentasaccharide established two ionic interactions in each step. In contrast, the affinities of the nonionic interactions (Kd 450 and 90 nM for the binding to α- and β-AT, respectively) were considerably higher than those for the normal pentasaccharide and the highest of all AT−saccharide interactions reported so far. The nonionic contribution to the total free energy of the high-affinity pentasaccharide binding to AT thus amounted to 70%. These findings show that nonionic interactions can play a predominant role in the binding of highly charged saccharide ligands to proteins and can be successfully exploited in the design of such biologically active ligands.

Place, publisher, year, edition, pages
2007. Vol. 46, no 11, 3378-3384 p.
Keyword [en]
Antithrombin III/chemistry/*metabolism, Humans, Kinetics, Oligosaccharides/chemistry/*metabolism, Polysaccharides/chemistry, Protein Binding
National Category
Medical and Health Sciences
URN: urn:nbn:se:uu:diva-15780DOI: 10.1021/bi6024929ISI: 000244854800046PubMedID: 17323934OAI: oai:DiVA.org:uu-15780DiVA: diva2:43551
Available from: 2008-03-05 Created: 2008-03-05 Last updated: 2011-02-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=17323934&dopt=Citation
By organisation
Department of Medical Biochemistry and Microbiology
In the same journal
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 158 hits
ReferencesLink to record
Permanent link

Direct link