uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Replication and Explorations of High-Order Epistasis Using a Large Advanced Intercross Line Pedigree
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational and Systems Biology. SLU.ORCID iD: 0000-0002-2722-5264
2011 (English)In: PLoS Genetics, ISSN 1553-7390, Vol. 7, no 7, e1002180- p.Article in journal (Refereed) Published
Abstract [en]

Dissection of the genetic architecture of complex traits persists as a major challenge in biology; despite considerable efforts, much remains unclear including the role and importance of genetic interactions. This study provides empirical evidence for a strong and persistent contribution of both second- and third-order epistatic interactions to long-term selection response for body weight in two divergently selected chicken lines. We earlier reported a network of interacting loci with large effects on body weight in an F(2) intercross between these high-and low-body weight lines. Here, most pair-wise interactions in the network are replicated in an independent eight-generation advanced intercross line (AIL). The original report showed an important contribution of capacitating epistasis to growth, meaning that the genotype at a hub in the network releases the effects of one or several peripheral loci. After fine-mapping of the loci in the AIL, we show that these interactions were persistent over time. The replication of five of six originally reported epistatic loci, as well as the capacitating epistasis, provides strong empirical evidence that the originally observed epistasis is of biological importance and is a contributor in the genetic architecture of this population. The stability of genetic interaction mechanisms over time indicates a non-transient role of epistasis on phenotypic change. Third-order epistasis was for the first time examined in this study and was shown to make an important contribution to growth, which suggests that the genetic architecture of growth is more complex than can be explained by two-locus interactions only. Our results illustrate the importance of designing studies that facilitate exploration of epistasis in populations for obtaining a comprehensive understanding of the genetics underlying a complex trait.

Place, publisher, year, edition, pages
2011. Vol. 7, no 7, e1002180- p.
National Category
Natural Sciences
URN: urn:nbn:se:uu:diva-157265DOI: 10.1371/journal.pgen.1002180ISI: 000293338600029OAI: oai:DiVA.org:uu-157265DiVA: diva2:435967
Available from: 2011-08-22 Created: 2011-08-22 Last updated: 2016-05-18

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Carlborg, Örjan
By organisation
Computational and Systems Biology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 255 hits
ReferencesLink to record
Permanent link

Direct link