uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Eigenvalue Bounds for Schrodinger Operators with a Homogeneous Magnetic Field
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Applied Mathematics.
2011 (English)In: Letters in Mathematical Physics, ISSN 0377-9017, E-ISSN 1573-0530, Vol. 97, no 3, 227-241 p.Article in journal (Refereed) Published
Abstract [en]

We prove Lieb-Thirring inequalities for Schrodinger operators with a homogeneous magnetic field in two and three space dimensions. The inequalities bound sums of eigenvalues by a semi-classical approximation which depends on the strength of the magnetic field, and hence quantifies the diamagnetic behavior of the system. For a harmonic oscillator in a homogenous magnetic field, we obtain the sharp constants in the inequalities.

Place, publisher, year, edition, pages
2011. Vol. 97, no 3, 227-241 p.
Keyword [en]
Schrodinger operator, Lieb-Thirring inequalities, magnetic field
National Category
Mathematics
Identifiers
URN: urn:nbn:se:uu:diva-158291DOI: 10.1007/s11005-011-0499-4ISI: 000294014700001OAI: oai:DiVA.org:uu-158291DiVA: diva2:439381
Available from: 2011-09-07 Created: 2011-09-06 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
Analysis and Applied Mathematics
In the same journal
Letters in Mathematical Physics
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 350 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf