uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Formation of new genes explains lower intron density in mammalian Rhodopsin G protein-coupled receptors
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience. (Farmakologi 3)
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience. (Farmakologi 3)
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience. (Farmakologi 3)
Show others and affiliations
2007 (English)In: Molecular Phylogenetics and Evolution, ISSN 1055-7903, E-ISSN 1095-9513, Vol. 43, no 3, 864-880 p.Article in journal (Refereed) Published
Abstract [en]

Mammalian G protein-coupled receptor (GPCR) genes are characterised by a large proportion of intronless genes or a lower density of introns when compared with GPCRs of invertebrates. It is unclear which mechanisms have influenced intron density in this protein family, which is one of the largest in the mammalian genomes. We used a combination of Hidden Markov Models (HMM) and BLAST searches to establish the comprehensive repertoire of Rhodopsin GPCRs from seven species and performed overall alignments and phylogenetic analysis using the maximum parsimony method for over 1400 receptors in 12 subgroups. We identified 14 different Ancestral Receptor Groups (ARGs) that have members in both vertebrate and invertebrate species. We found that there exists a remarkable difference in the intron density among ancestral and new Rhodopsin GPCRs. The intron density among ARGs members was more than 3.5-fold higher than that within non-ARG members and more than 2-fold higher when considering only the 7TM region. This suggests that the new GPCR genes have been predominantly formed intronless while the ancestral receptors likely accumulated introns during their evolution. Many of the intron positions found in mammalian ARG receptor sequences were found to be present in orthologue invertebrate receptors suggesting that these intron positions are ancient. This analysis also revealed that one intron position is much more frequent than any other position and it is common for a number of phylogenetically different Rhodopsin GPCR groups. This intron position lies within a functionally important, conserved, DRY motif which may form a proto-splice site that could contribute to positional intron insertion. Moreover, we have found that other receptor motifs, similar to DRY, also contain introns between the second and third nucleotide of the arginine codon which also forms a proto-splice site. Our analysis presents compelling evidence that there was not a major loss of introns in mammalian GPCRs and formation of new GPCRs among mammals explains why these have fewer introns compared to invertebrate GPCRs. We also discuss and speculate about the possible role of different RNA- and DNA-based mechanisms of intron insertion and loss.

Place, publisher, year, edition, pages
2007. Vol. 43, no 3, 864-880 p.
Keyword [en]
Animals, Computational Biology, Databases; Nucleic Acid, Evolution; Molecular, Humans, Introns/*genetics, Mammals/classification/*genetics, Phylogeny, Receptors; G-Protein-Coupled/*genetics, Rhodopsin/*genetics, Sequence Alignment
National Category
Medical and Health Sciences Biological Sciences
URN: urn:nbn:se:uu:diva-16337DOI: 10.1016/j.ympev.2006.11.007ISI: 000247539000012PubMedID: 17188520OAI: oai:DiVA.org:uu-16337DiVA: diva2:44108
Available from: 2008-05-19 Created: 2008-05-19 Last updated: 2011-02-03Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=17188520&dopt=Citation
By organisation
Department of Neuroscience
In the same journal
Molecular Phylogenetics and Evolution
Medical and Health SciencesBiological Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 155 hits
ReferencesLink to record
Permanent link

Direct link