uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.ORCID iD: 0000-0003-3509-8266
Show others and affiliations
2011 (English)In: Nature Geoscience, ISSN 1752-0894, E-ISSN 1752-0908, Vol. 4, no 9, 593-596 p.Article in journal, Letter (Refereed) Published
Abstract [en]

Hydroelectric reservoirs cover an area of 3.4 x 10(5) km(2) and comprise about 20% of all reservoirs. In addition, they contain large stores of formerly terrestrial organic carbon. Significant amounts of greenhouse gases are emitted(2), especially in the early years following reservoir creation, but the global extent of these emissions is poorly known. Previous estimates of emissions from all types of reservoir indicate that these human-made systems emit 321 Tg of carbon per year (ref. 4). Here we assess the emissions of carbon dioxide and methane from hydroelectric reservoirs, on the basis of data from 85 globally distributed hydroelectric reservoirs that account for 20% of the global area of these systems. We relate the emissions to reservoir age, location biome, morphometric features and chemical status. We estimate that hydroelectric reservoirs emit about 48 Tg C as CO(2) and 3 Tg C as CH(4), corresponding to 4% of global carbon emissions from inland waters. Our estimates are smaller than previous estimates on the basis of more limited data. Carbon emissions are correlated to reservoir age and latitude, with the highest emission rates from the tropical Amazon region. We conclude that future emissions will be highly dependent on the geographic location of new hydroelectric reservoirs.

Place, publisher, year, edition, pages
2011. Vol. 4, no 9, 593-596 p.
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:uu:diva-158875DOI: 10.1038/ngeo1211ISI: 000294452400005OAI: oai:DiVA.org:uu-158875DiVA: diva2:442074
Available from: 2011-09-20 Created: 2011-09-19 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Tranvik, Lars J.

Search in DiVA

By author/editor
Tranvik, Lars J.
By organisation
Limnology
In the same journal
Nature Geoscience
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 431 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf