uu.seUppsala University Publications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt183",{id:"formSmash:upper:j_idt183",widgetVar:"widget_formSmash_upper_j_idt183",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt191_j_idt194",{id:"formSmash:upper:j_idt191:j_idt194",widgetVar:"widget_formSmash_upper_j_idt191_j_idt194",target:"formSmash:upper:j_idt191:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Sheaves of N=2 supersymmetric vertex algebras on Poisson manifoldsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2012 (English)In: Journal of Geometry and Physics, ISSN 0393-0440, E-ISSN 1879-1662, Vol. 62, no 11, 2259-2278 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2012. Vol. 62, no 11, 2259-2278 p.
##### Keyword [en]

Vertex algebra, SUSY vertex algebra, Poisson vertex algebra, Poisson geometry
##### National Category

Other Physics Topics
##### Research subject

Theoretical Physics
##### Identifiers

URN: urn:nbn:se:uu:diva-159002DOI: 10.1016/j.geomphys.2012.07.003ISI: 000309083500012OAI: oai:DiVA.org:uu-159002DiVA: diva2:442084
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt703",{id:"formSmash:j_idt703",widgetVar:"widget_formSmash_j_idt703",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt714",{id:"formSmash:j_idt714",widgetVar:"widget_formSmash_j_idt714",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt729",{id:"formSmash:j_idt729",widgetVar:"widget_formSmash_j_idt729",multiple:true});
##### Funder

Swedish Research Council, 621-2008-4273
Available from: 2011-09-20 Created: 2011-09-20 Last updated: 2017-12-08Bibliographically approved
##### In thesis

We construct a sheaf of N = 2 vertex algebras naturally associated to any Poisson manifold. The relation of this sheaf to the chiral de Rham complex is discussed. We reprove the result about the existence of two commuting N = 2 superconformal structures on the space of sections of the chiral de Rham complex of a Calabi-Yau manifold, but now calculated in a manifest N = 2 formalism. We discuss how the semi-classical limit of this sheaf of N = 2 vertex algebras is related to the classical supersymmetric non-linear sigma model.

1. Going Round in Circles: From Sigma Models to Vertex Algebras and Back$(function(){PrimeFaces.cw("OverlayPanel","overlay447665",{id:"formSmash:j_idt1256:0:j_idt1264",widgetVar:"overlay447665",target:"formSmash:j_idt1256:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt2002",{id:"formSmash:j_idt2002",widgetVar:"widget_formSmash_j_idt2002",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt2058",{id:"formSmash:lower:j_idt2058",widgetVar:"widget_formSmash_lower_j_idt2058",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt2059_j_idt2061",{id:"formSmash:lower:j_idt2059:j_idt2061",widgetVar:"widget_formSmash_lower_j_idt2059_j_idt2061",target:"formSmash:lower:j_idt2059:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});