uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
ESEM as a Tool for Studying High Temperature Electronics
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
2011 (English)In: IMAPS High Temperature Electronics Network (HiTEN 2011), July 18-20, 2011 ,Oxford, UK, 2011Conference paper, Published paper (Refereed)
Abstract [en]

Researchers studying materials and processes at high temperatures are often restricted to do evaluation afterwards and at room temperature using e.g. scanning electron microscopy (SEM). Limited by high vacuum, outgassing and non-conducting samples are difficult to study with SEM. For such samples, environmental scanning electron microscope (ESEM) is an alternative that is particularly suited also for high temperature in-situ studies. The electron detector in the ESEM make use of otherwise unwanted scattering of electrons as an amplifier of the signal, and by using differential pumping, it is possible to introduce several mbar of either oxygen, water vapor, or a gas of choice into the sample chamber while still maintaining the high-vacuum in the electron column. The auxiliary gas neutralizes surface charges built up by the electron beam, which makes it possible to image non-conductive and outgassing samples, thus making it possible to study e.g. polymeric and high temperature materials. Our ESEM, FEI XL30, have a heating stage making it possible to reach temperatures up to 1500°C. Equipped with electrical feed- throughs, the instrument can be used to study high temperature phenomena on electrically activated components.

ESEM is an instrument that has found its use for biological and organic samples. However, less work has been done using it for high temperature processes. Here, we show real-time imaging of the sintering of dielectric and Ag thick-film prints on AlN substrates. The use of the electrical feed-throughs to activate electrical components and study them at high temperatures is also demonstrated. ESEM is a versatile tool for high temperature studies and in-situ analysis of electrical components, solder processes and different die-attach materials. 

Place, publisher, year, edition, pages
2011.
National Category
Engineering and Technology
Research subject
Engineering Science with specialization in Microsystems Technology
Identifiers
URN: urn:nbn:se:uu:diva-159036OAI: oai:DiVA.org:uu-159036DiVA: diva2:442343
Conference
HiTEN 2011
Projects
wisenet
Available from: 2011-09-21 Created: 2011-09-21 Last updated: 2016-04-20
In thesis
1. Microsystems for Harsh Environments
Open this publication in new window or tab >>Microsystems for Harsh Environments
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

When operating microsystems in harsh environments, many conventionally used techniques are limiting. Further, depending on if the demands arise from the environment or the conditions inside the system, different approaches have to be used. This thesis deals with the challenges encountered when microsystems are used at high pressures and high temperatures.

For microsystems operating at harsh conditions, many parameters will vary extensively with both temperature and pressure, and to maintain control, these variations needs to be well understood. Covered within this thesis is the to-date strongest membrane micropump, demonstrated to pump against back-pressures up to 13 MPa, and a gas-tight high pressure valve that manages pressures beyond 20 MPa.

With the ability to manipulate fluids at high pressures in microsystems at elevated temperatures, opportunities are created to use green solvents like supercritical fluids like CO2. To allow for a reliable and predictable operation in systems using more than one fluid, the behavior of the multiphase flow needs to be controlled. Therefore, the effect of varying temperature and pressure, as well as flow conditions were investigated for multiphase flows of CO2 and H2O around and above the critical point of CO2. Also, the influence of channel surface and geometry was investigated.

Although supercritical CO2 only requires moderate temperatures, other supercritical fluids or reactions require much higher temperatures. The study how increasing temperature affects a system, a high-temperature testbed inside an electron microscope was created.

One of the challenges for high-temperature systems is the interface towards room temperature components. To circumvent the need of wires, high temperature wireless systems were studied together with a wireless pressure sensing system operating at temperatures up to 1,000 °C for pressures up to 0.3 MPa.

To further extend the capabilities of microsystems and combine high temperatures and high pressures, it is necessary to consider that the requirements differs fundamentally. Therefore, combining high pressures and high temperatures in microsystems results in great challenges, which requires trade-offs and compromises. Here, steel and HTCC based microsystems may prove interesting alternatives for future high performance microsystems.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2015. 50 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1263
Keyword
Microsystems, harsh environments, high pressures, high temperatures, supercritical microfluidics
National Category
Engineering and Technology
Research subject
Engineering Science with specialization in Microsystems Technology
Identifiers
urn:nbn:se:uu:diva-253558 (URN)978-91-554-9272-4 (ISBN)
Public defence
2015-09-11, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2015-08-19 Created: 2015-05-29 Last updated: 2015-09-07

Open Access in DiVA

No full text

Authority records BETA

Ericson, FredricHjort, KlasKlintberg, Lena

Search in DiVA

By author/editor
Ericson, FredricHjort, KlasKlintberg, Lena
By organisation
Microsystems Technology
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 827 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf