Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
High-throughput cellular-resolution in vivo vertebrate screening
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Centre for Image Analysis. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Centre for Image Analysis. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
Show others and affiliations
2011 (English)In: Proc. 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences, 2011Conference paper, Published paper (Refereed)
Place, publisher, year, edition, pages
2011.
National Category
Medical Image Processing
Identifiers
URN: urn:nbn:se:uu:diva-159201OAI: oai:DiVA.org:uu-159201DiVA, id: diva2:443418
Available from: 2011-09-25 Created: 2011-09-25 Last updated: 2011-11-04
In thesis
1. Methods for 2D and 3D Quantitative Microscopy of Biological Samples
Open this publication in new window or tab >>Methods for 2D and 3D Quantitative Microscopy of Biological Samples
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

New microscopy techniques are continuously developed, resulting in more rapid acquisition of large amounts of data. Manual analysis of such data is extremely time-consuming and many features are difficult to quantify without the aid of a computer. But with automated image analysis biologists can extract quantitative measurements and increases throughput significantly, which becomes particularly important in high-throughput screening (HTS). This thesis addresses automation of traditional analysis of cell data as well as automation of both image capture and analysis in zebrafish high-throughput screening. 

It is common in microscopy images to stain the nuclei in the cells, and to label the DNA and proteins in different ways. Padlock-probing and proximity ligation are highly specific detection methods that  produce point-like signals within the cells. Accurate signal detection and segmentation is often a key step in analysis of these types of images. Cells in a sample will always show some degree of variation in DNA and protein expression and to quantify these variations each cell has to be analyzed individually. This thesis presents development and evaluation of single cell analysis on a range of different types of image data. In addition, we present a novel method for signal detection in three dimensions. 

HTS systems often use a combination of microscopy and image analysis to analyze cell-based samples. However, many diseases and biological pathways can be better studied in whole animals, particularly those that involve organ systems and multi-cellular interactions. The zebrafish is a widely-used vertebrate model of human organ function and development. Our collaborators have developed a high-throughput platform for cellular-resolution in vivo chemical and genetic screens on zebrafish larvae. This thesis presents improvements to the system, including accurate positioning of the fish which incorporates methods for detecting regions of interest, making the system fully automatic. Furthermore, the thesis describes a novel high-throughput tomography system for screening live zebrafish in both fluorescence and bright field microscopy. This 3D imaging approach combined with automatic quantification of morphological changes enables previously intractable high-throughput screening of vertebrate model organisms.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2011. p. 70
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 856
Keywords
Image analysis, cytmetry, model organism, zebrafish, screening
National Category
Medical Image Processing
Research subject
Computerized Image Processing
Identifiers
urn:nbn:se:uu:diva-159196 (URN)978-91-554-8167-4 (ISBN)
Public defence
2011-11-11, Room 2446, Polacksbacken, Lägerhyddsvägen 2, Uppsala, 10:15 (English)
Opponent
Supervisors
Available from: 2011-10-21 Created: 2011-09-25 Last updated: 2014-07-21Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Allalou, AminWählby, Carolina

Search in DiVA

By author/editor
Allalou, AminWählby, Carolina
By organisation
Centre for Image AnalysisComputerized Image Analysis and Human-Computer Interaction
Medical Image Processing

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 616 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf