uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The influence of viscosity contrasts on the strain pattern and magnitude within and around dense blocks sinking through Newtonian salt
Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, Solid Earth Geology.
Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, Solid Earth Geology.
2012 (English)In: Journal of Structural Geology, ISSN 0191-8141, E-ISSN 1873-1201, Vol. 35, 102-116 p.Article in journal (Refereed) Published
Abstract [en]

Dense inclusions in salt cover a wide range of materials and therefore material properties, depending on their origin. We have modelled the deformation associated with gravity-driven sinking of horizontal, initially rectangular blocks of dense material through Newtonian salt. Our two-dimensional Finite Differences models analyse the influence and interaction of two parameters: (1) the size, i.e. the aspect ratio (AR), of the block and (2) the viscosity contrast between the salt and the more viscous block over four orders of magnitude. The results demonstrate that during gravity-driven sinking the blocks are folded and sheared. The strain magnitude within the block increases with increasing block AR and decreases with increasing viscosity contrast. Sinking velocities of the blocks are in the range of <2 and >6 mm a−1 and are a function of block and salt deformation that depend on the block mass and AR, as well as on the viscosity contrast. Salt deformation is characterised by the development of an array of characteristic structures that include folds and shear zones, as well as a zone characterised by extreme vertical stretching above the block, termed entrainment channel. Strain in the salt is locally more than two orders of magnitude higher than in the block and increases with increasing block AR and viscosity contrast. Salt deformation is distributed in closely-spaced high- and low-strain zones concentrated in the block vicinity and the entrainment channel.

Place, publisher, year, edition, pages
2012. Vol. 35, 102-116 p.
Keyword [en]
salt, anhydrite, deformation, Newtonian rheology, viscosity contrast, Gorleben
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:uu:diva-159342DOI: 10.1016/j.jsg.2011.07.007ISI: 000300268300010OAI: oai:DiVA.org:uu-159342DiVA: diva2:444372
Available from: 2011-09-28 Created: 2011-09-28 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Burchardt, SteffiKoyi, Hemin

Search in DiVA

By author/editor
Burchardt, SteffiKoyi, Hemin
By organisation
Solid Earth Geology
In the same journal
Journal of Structural Geology
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 409 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf