uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Femtosecond time-delay X-ray holography
Show others and affiliations
2007 (English)In: Nature, ISSN 0028-0836, Vol. 448, no 7154, 676-679 p.Article in journal (Refereed) Published
Abstract [en]

Extremely intense and ultrafast X-ray pulses from free-electron lasers offer unique opportunities to study fundamental aspects of complex transient phenomena in materials. Ultrafast time-resolved methods usually require highly synchronized pulses to initiate a transition and then probe it after a precisely defined time delay. In the X-ray regime, these methods are challenging because they require complex optical systems and diagnostics. Here we propose and apply a simple holographic measurement scheme, inspired by Newton's 'dusty mirror' experiment1, to monitor the X-ray-induced explosion of microscopic objects. The sample is placed near an X-ray mirror; after the pulse traverses the sample, triggering the reaction, it is reflected back onto the sample by the mirror to probe this reaction. The delay is encoded in the resulting diffraction pattern to an accuracy of one femtosecond, and the structural change is holographically recorded with high resolution. We apply the technique to monitor the dynamics of polystyrene spheres in intense free-electron-laser pulses, and observe an explosion occurring well after the initial pulse. Our results support the notion that X-ray flash imaging2, 3 can be used to achieve high resolution, beyond radiation damage limits for biological samples4. With upcoming ultrafast X-ray sources we will be able to explore the three-dimensional dynamics of materials at the timescale of atomic motion.

Place, publisher, year, edition, pages
2007. Vol. 448, no 7154, 676-679 p.
Keyword [en]
Electrons, Holography/*methods, Lasers, Microspheres, Polystyrenes/*chemistry, Time Factors, X-Rays
National Category
Natural Sciences Engineering and Technology
URN: urn:nbn:se:uu:diva-16721DOI: 10.1038/nature06049ISI: 000248598000040PubMedID: 17687320OAI: oai:DiVA.org:uu-16721DiVA: diva2:44492
Available from: 2008-06-03 Created: 2008-06-03 Last updated: 2014-09-26Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=17687320&dopt=Citation

Search in DiVA

By author/editor
Szöke, AbrahamBurmeister, FlorianBergh, MagnusCaleman, CarlHuldt, GöstaSeibert, M. MarvinHajdu, Janos
By organisation
Molecular biophysics
In the same journal
Natural SciencesEngineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 217 hits
ReferencesLink to record
Permanent link

Direct link