uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Overview of physics results from MAST
Show others and affiliations
2011 (English)In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 51, no 9, 094013- p.Article in journal (Refereed) Published
Abstract [en]

Major developments on the Mega Amp Spherical Tokamak (MAST) have enabled important advances in support of ITER and the physics basis of a spherical tokamak (ST) based component test facility (CTF), as well as providing new insight into underlying tokamak physics. For example, L-H transition studies benefit from high spatial and temporal resolution measurements of pedestal profile evolution (temperature, density and radial electric field) and in support of pedestal stability studies the edge current density profile has been inferred from motional Stark effect measurements. The influence of the q-profile and E x B flow shear on transport has been studied in MAST and equilibrium flow shear has been included in gyro-kinetic codes, improving comparisons with the experimental data. H-modes exhibit a weaker q and stronger collisionality dependence of heat diffusivity than implied by IPB98(gamma, 2) scaling, which may have important implications for the design of an ST-based CTF. ELM mitigation, an important issue for ITER, has been demonstrated by applying resonant magnetic perturbations (RMPs) using both internal and external coils, but full stabilization of type-I ELMs has not been observed. Modelling shows the importance of including the plasma response to the RMP fields. MAST plasmas with q > 1 and weak central magnetic shear regularly exhibit a long-lived saturated ideal internal mode. Measured plasma braking in the presence of this mode compares well with neo-classical toroidal viscosity theory. In support of basic physics understanding, high resolution Thomson scattering measurements are providing new insight into sawtooth crash dynamics and neo-classical tearing mode critical island widths. Retarding field analyser measurements show elevated ion temperatures in the scrape-off layer of L-mode plasmas and, in the presence of type-I ELMs, ions with energy greater than 500 eV are detected 20 cm outside the separatrix. Disruption mitigation by massive gas injection has reduced divertor heat loads by up to 70%.

Place, publisher, year, edition, pages
2011. Vol. 51, no 9, 094013- p.
National Category
Physical Sciences
URN: urn:nbn:se:uu:diva-159477DOI: 10.1088/0029-5515/51/9/094013ISI: 000294731600014OAI: oai:DiVA.org:uu-159477DiVA: diva2:445483
Available from: 2011-10-04 Created: 2011-10-03 Last updated: 2011-10-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
Applied Nuclear Physics
In the same journal
Nuclear Fusion
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 176 hits
ReferencesLink to record
Permanent link

Direct link