uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis.
AngioGenetics Sweden AB och Karolinska Institutet, Institutionen för medicinsk biokemi och biofysik.
AngioGenetics Sweden AB och Karolinska Institutet, Institutionen för medicinsk biokemi och biofysik.
Show others and affiliations
2007 (English)In: Nature, ISSN 1476-4687, Vol. 445, no 7129, 776-80 p.Article in journal (Refereed) Published
Abstract [en]

In sprouting angiogenesis, specialized endothelial tip cells lead the outgrowth of blood-vessel sprouts towards gradients of vascular endothelial growth factor (VEGF)-A. VEGF-A is also essential for the induction of endothelial tip cells, but it is not known how single tip cells are selected to lead each vessel sprout, and how tip-cell numbers are determined. Here we present evidence that delta-like 4 (Dll4)-Notch1 signalling regulates the formation of appropriate numbers of tip cells to control vessel sprouting and branching in the mouse retina. We show that inhibition of Notch signalling using gamma-secretase inhibitors, genetic inactivation of one allele of the endothelial Notch ligand Dll4, or endothelial-specific genetic deletion of Notch1, all promote increased numbers of tip cells. Conversely, activation of Notch by a soluble jagged1 peptide leads to fewer tip cells and vessel branches. Dll4 and reporters of Notch signalling are distributed in a mosaic pattern among endothelial cells of actively sprouting retinal vessels. At this location, Notch1-deleted endothelial cells preferentially assume tip-cell characteristics. Together, our results suggest that Dll4-Notch1 signalling between the endothelial cells within the angiogenic sprout serves to restrict tip-cell formation in response to VEGF, thereby establishing the adequate ratio between tip and stalk cells required for correct sprouting and branching patterns. This model offers an explanation for the dose-dependency and haploinsufficiency of the Dll4 gene, and indicates that modulators of Dll4 or Notch signalling, such as gamma-secretase inhibitors developed for Alzheimer's disease, might find usage as pharmacological regulators of angiogenesis.

Place, publisher, year, edition, pages
2007. Vol. 445, no 7129, 776-80 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-159702DOI: 10.1038/nature05571PubMedID: 17259973OAI: oai:DiVA.org:uu-159702DiVA: diva2:446361
Available from: 2011-10-07 Created: 2011-10-07 Last updated: 2011-10-07

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Hellström, Mats

Search in DiVA

By author/editor
Hellström, Mats
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 626 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf