uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effects of the histone deacetylase inhibitor valproic Acid on human pericytes in vitro
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences. (Embryotoxikologi)
Show others and affiliations
2011 (English)In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 6, no 9, e24954- p.Article in journal (Refereed) Published
Abstract [en]

Microvascular pericytes are of key importance in neoformation of blood vessels, in stabilization of newly formed vessels as well as maintenance of angiostasis in resting tissues. Furthermore, pericytes are capable of differentiating into pro-fibrotic collagen type I producing fibroblasts. The present study investigates the effects of the histone deacetylase (HDAC) inhibitor valproic acid (VPA) on pericyte proliferation, cell viability, migration and differentiation. The results show that HDAC inhibition through exposure of pericytes to VPA in vitro causes the inhibition of pericyte proliferation and migration with no effect on cell viability. Pericyte exposure to the potent HDAC inhibitor Trichostatin A caused similar effects on pericyte proliferation, migration and cell viability. HDAC inhibition also inhibited pericyte differentiation into collagen type I producing fibroblasts. Given the importance of pericytes in blood vessel biology a qPCR array focusing on the expression of mRNAs coding for proteins that regulate angiogenesis was performed. The results showed that HDAC inhibition promoted transcription of genes involved in vessel stabilization/maturation in human microvascular pericytes. The present in vitro study demonstrates that VPA influences several aspects of microvascular pericyte biology and suggests an alternative mechanism by which HDAC inhibition affects blood vessels. The results raise the possibility that HDAC inhibition inhibits angiogenesis partly through promoting a pericyte phenotype associated with stabilization/maturation of blood vessels.

Place, publisher, year, edition, pages
2011. Vol. 6, no 9, e24954- p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-160015DOI: 10.1371/journal.pone.0024954ISI: 000295265100034PubMedID: 21966390OAI: oai:DiVA.org:uu-160015DiVA: diva2:447823
Available from: 2011-10-13 Created: 2011-10-13 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Friman, TomasDencker, LennartSundberg, Christian

Search in DiVA

By author/editor
Friman, TomasDencker, LennartSundberg, Christian
By organisation
Department of Medical Biochemistry and MicrobiologyDepartment of Pharmaceutical BiosciencesDepartment of Women's and Children's Health
In the same journal
PLoS ONE
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 1020 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf