uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Energetics of Titan's ionosphere: Model comparisons with Cassini data
Show others and affiliations
2011 (English)In: Journal of Geophysical Research, ISSN 0148-0227, Vol. 116, A09310- p.Article in journal (Refereed) Published
Abstract [en]

Observed electron and ion temperatures in planetary ionospheres are higher than the neutral temperature. Instruments on board the Cassini spacecraft have shown this is also true for Titan. The Radio and Plasma Wave Science Langmuir Probe (RPWS-LP) (Wahlund et al., 2005) has measured electron temperatures above 1000 K. Ionospheric ion temperatures were deduced from a combined analysis of data from the Cassini Plasma Spectrometer and Ion and Neutral Mass Spectrometer (INMS) (Crary et al., 2009). Elevated electron temperatures attributed to heating by suprathermal electrons were predicted by pre-Cassini models (e.g., Gan et al., 1992; Roboz and Nagy, 1994) and observed by the Cassini electron spectrometer. Models of the energetic electrons and ions are presented that include Cassini inputs (i.e., measured neutral densities from INMS). The results are compared between 800 and 1800 km with suprathermal electron fluxes and plasma temperatures measured by Cassini instruments emphasizing the thermal electron temperature. Using only solar inputs, the dayside model agrees well with electron temperatures measured by RPWS-LP (Agren et al., 2009) between 1000 and 1400 km. At higher altitudes energy input from magnetospheric electrons is needed to reproduce the measured temperature. Incorporating typical magnetospheric electron fluxes into the dayside does not noticeably increase ion production near the ionospheric peak; however, effects can be seen near 1350 km. Joule heating effects are shown to be capable of contributing significantly to the ion temperature. Magnetospheric suprathermal electrons are shown to provide sufficient heating for the thermal electron population in the middle to upper ionosphere on the nightside.

Place, publisher, year, edition, pages
2011. Vol. 116, A09310- p.
National Category
Physical Sciences
URN: urn:nbn:se:uu:diva-160152DOI: 10.1029/2011JA016603ISI: 000295133900002OAI: oai:DiVA.org:uu-160152DiVA: diva2:448512
Available from: 2011-10-17 Created: 2011-10-17 Last updated: 2011-10-17Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
Swedish Institute of Space Physics, Uppsala Division
In the same journal
Journal of Geophysical Research
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 142 hits
ReferencesLink to record
Permanent link

Direct link