uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Renal oxidative stress, oxygenation and hypertension
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology, Integrativ Fysiologi.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology, Integrativ Fysiologi.
2011 (English)In: American Journal of Physiology. Regulatory Integrative and Comparative Physiology, ISSN 0363-6119, E-ISSN 1522-1490, Vol. 301, no 5, R1229-R1241 p.Article in journal (Refereed) Published
Abstract [en]

Hypertension is closely associated with progressive kidney dysfunction, manifested as glomerulosclerosis, interstitial fibrosis, proteinuria and eventually declining glomerular filtration. The postulated mechanism for development of glomerulosclerosis is barotrauma caused by increased capillary pressure, but the reason for development of interstitial fibrosis and the subsequently reduced kidney function is less clear. However, it has been hypothesized that tissue hypoxia induces fibrogenesis and progressive renal failure. This is very interesting, since recent reports highlight several different mechanisms resulting in altered oxygen handling and availability in the hypertensive kidney. Such mechanisms include decreased renal blood flow due to increased vascular tone induced by angiotensin II that limits oxygen delivery, increased oxidative stress resulting in increased mitochondrial oxygen usage, increased oxygen usage for tubular electrolyte transport and shunting of oxygen from arterial to venous blood in preglomerular vessels. It has been shown in several studies that interventions to prevent oxidative stress and to restore kidney tissue oxygenation prevent progression of kidney dysfunction. Furthermore, inhibition of angiotensin II activity, by either blocking AT(1)-receptors or angiotensin converting enzyme, or by preventing oxidative stress by administration of antioxidants also results in improved blood pressure control. It therefore seems likely that tissue hypoxia in the hypertensive kidney contributes to progression of kidney damage and perhaps also maintaining the high blood pressure.

Place, publisher, year, edition, pages
2011. Vol. 301, no 5, R1229-R1241 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-160916DOI: 10.1152/ajpregu.00720.2010ISI: 000296742100002PubMedID: 21832206OAI: oai:DiVA.org:uu-160916DiVA: diva2:453582
Available from: 2011-11-03 Created: 2011-11-03 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Palm, FredrikNordquist, Lina

Search in DiVA

By author/editor
Palm, FredrikNordquist, Lina
By organisation
Integrativ Fysiologi
In the same journal
American Journal of Physiology. Regulatory Integrative and Comparative Physiology
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 668 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf