uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Structural evaluation of the glucuronides of morphine and formoterol using chemical derivatization with 1,2-dimethylimidazole-4-sulfonyl chloride and liquid chromatography/ion trap mass spectrometry
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry.
2008 (English)In: Rapid Communications in Mass Spectrometry, ISSN 0951-4198, E-ISSN 1097-0231, Vol. 22, no 17, 2685-2697 p.Article in journal (Refereed) Published
Abstract [en]

For the first time chemical derivatization of isomeric drug glucuronides with 1,2-dimethylimidazole-4-sulfonyl chloride (DMISC) has been successfully applied as a tool for determining the site of conjugation. This provides a way to differentiate between glucuronide isomers containing aliphatic and phenolic hydroxyl groups. The analyses were performed with liquid chromatography/electrospray ion trap mass spectrometry (LC/ESI-MSn). DMISC has previously been shown to react selectively with phenols in estrogens, thus improving sensitivity in ESI-MS. The model compounds selected for this study were commercially available standards of formoterol, morphine, morphine-3-glucuronide (M3G), and morphine-6-glucuronide (M6G). Formoterol glucuronides were produced with an enzymatic method in house. Both formoterol and morphine possess one phenolic and one aliphatic hydroxyl group where glucuronidation could take place. The product ion mass spectra of the native morphine glucuronides were indistinguishable due to the initial neutral loss of monodehydrated glucuronic acid (1.76u). However, a significant difference between the isomers was observed with DMISC derivatization, as only the form with a free phenol, M6G, gave a detectable reaction product. Formoterol formed two detectable glucuronide isomers in the enzymatic reaction. Their respective sites of conjugation could not be directly determined from the product ion spectra. Reaction with DMISC, however, gave a detectable product with only one of the isomers. Based on previous experience of the preferred DMISC reactions with phenols, and interpretation of the fragmentation pattern of the derivative, it was concluded that the reactive isomer had a free phenol, and was thus conjugated on the aliphatic chain.

Place, publisher, year, edition, pages
2008. Vol. 22, no 17, 2685-2697 p.
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-17658DOI: 10.1002/rcm.3667ISI: 000258753500009OAI: oai:DiVA.org:uu-17658DiVA: diva2:45429
Available from: 2008-08-06 Created: 2008-08-06 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Bondesson, UlfHedeland, Mikael

Search in DiVA

By author/editor
Bondesson, UlfHedeland, Mikael
By organisation
Analytical Pharmaceutical Chemistry
In the same journal
Rapid Communications in Mass Spectrometry
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 374 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf