uu.seUppsala University Publications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt183",{id:"formSmash:upper:j_idt183",widgetVar:"widget_formSmash_upper_j_idt183",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt191_j_idt194",{id:"formSmash:upper:j_idt191:j_idt194",widgetVar:"widget_formSmash_upper_j_idt191_j_idt194",target:"formSmash:upper:j_idt191:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Rational symplectic field theory over Z_2 for exact Lagrangian cobordismsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2008 (English)In: Journal of the European Mathematical Society (Print), ISSN 1435-9855, E-ISSN 1435-9863, Vol. 10, no 3, 641-704 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2008. Vol. 10, no 3, 641-704 p.
##### Keyword [en]

Holomorphic curve, Lagrangian submanifold, Legendrian submanifold, symplectic cobordism, symplectic field theory
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:uu:diva-17673DOI: 10.4171/JEMS/126ISI: 000257869200004OAI: oai:DiVA.org:uu-17673DiVA: diva2:45444
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt703",{id:"formSmash:j_idt703",widgetVar:"widget_formSmash_j_idt703",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt714",{id:"formSmash:j_idt714",widgetVar:"widget_formSmash_j_idt714",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt729",{id:"formSmash:j_idt729",widgetVar:"widget_formSmash_j_idt729",multiple:true});
Available from: 2008-08-14 Created: 2008-08-14 Last updated: 2017-12-08Bibliographically approved

We construct a version of rational symplectic ﬁeld theory for pairs (X, L), where X is an exact symplectic manifold, where L ⊂ X is an exact Lagrangian submanifold with components subdivided into k subsets, and where both X and L have cylindrical ends. The theory associates to (X, L) a Z-graded chain complex of vector spaces over Z_2 , ﬁltered with k ﬁltration levels. The corresponding k -level spectral sequence is invariant under deformations of (X, L) and has the following property: if (X, L) is obtained by joining a negative end of a pair (X, L) to a positive end of a pair (X, L), then there are natural morphisms from the spectral sequences of (X, L) and of (X ,L) to the spectral sequence of (X, L). As an application, we show that if \Lambda ⊂ Y is a Legendrian submanifold of a contact manifold then the spectral sequences associated to (Y × R, \Lambda_s × R), where Y × R is the symplectization of Y and where \Lambda_s ⊂ Y is the Legendrian submanifold consisting of s parallel copies of \Lambda subdivided into k subsets, give Legendrian isotopy invariants of \Lambda.

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt2002",{id:"formSmash:j_idt2002",widgetVar:"widget_formSmash_j_idt2002",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt2058",{id:"formSmash:lower:j_idt2058",widgetVar:"widget_formSmash_lower_j_idt2058",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt2059_j_idt2061",{id:"formSmash:lower:j_idt2059:j_idt2061",widgetVar:"widget_formSmash_lower_j_idt2059_j_idt2061",target:"formSmash:lower:j_idt2059:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});