Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Visualization and Haptics for Interactive Medical Image Analysis: Image Segmentation in Cranio-Maxillofacial Surgery Planning
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Centre for Image Analysis. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Centre for Image Analysis. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Centre for Image Analysis. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
2011 (English)In: Visual Informatics: Sustaining Research and Innovations / [ed] H. Badioze Zaman, et al. (Eds.), Berlin Heidelberg: Springer-Verlag , 2011, p. 1-12Conference paper, Published paper (Refereed)
Abstract [en]

A central problem in cranio-maxillofacial (CMF) surgery is to restore the normal anatomy of the skeleton after defects, e.g., trauma to the face. With careful pre-operative planning, the precision and predictability of the craniofacial reconstruction can be significantly improved. In addition, morbidity can be reduced thanks to shorter operation time. An important component in surgery planning is to be able to accurately measure the extent of anatomical structures. Of particular interest are the shape and volume of the orbits (eye sockets). These properties can be measured in 3D CT images of the skull, provided that an accurate segmentation of the orbits is available. Here, we present a system for interactive segmentation of the orbit in CT images. The system utilizes 3D visualization and haptic feedback to facilitate efficient exploration and manipulation of 3D data.

Place, publisher, year, edition, pages
Berlin Heidelberg: Springer-Verlag , 2011. p. 1-12
Series
Lecture Notes in Computer Science ; 7066
National Category
Medical Image Processing
Research subject
Computerized Image Analysis; Computerized Image Processing
Identifiers
URN: urn:nbn:se:uu:diva-161227DOI: 10.1007/978-3-642-25191-7_1ISBN: 978-3-642-25190-0 (print)OAI: oai:DiVA.org:uu-161227DiVA, id: diva2:455491
Conference
2nd International Visual Informatics Conference (IVIC 2011)
Available from: 2011-11-10 Created: 2011-11-09 Last updated: 2022-01-28
In thesis
1. Interactive 3D Image Analysis for Cranio-Maxillofacial Surgery Planning and Orthopedic Applications
Open this publication in new window or tab >>Interactive 3D Image Analysis for Cranio-Maxillofacial Surgery Planning and Orthopedic Applications
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Modern medical imaging devices are able to generate highly detailed three-dimensional (3D) images of the skeleton. Computerized image processing and analysis methods, combined with real-time volume visualization techniques, can greatly facilitate the interpretation of such images and are increasingly used in surgical planning to aid reconstruction of the skeleton after trauma or disease. Two key challenges are to accurately separate (segment) bone structures or cavities of interest from the rest of the image and to interact with the 3D data in an efficient way. This thesis presents efficient and precise interactive methods for segmenting, visualizing, and analysing 3D computed tomography (CT) images of the skeleton. The methods are validated on real CT datasets and are primarily intended to support planning and evaluation of cranio-maxillofacial (CMF) and orthopedic surgery.

Two interactive methods for segmenting the orbit (eye-socket) are introduced. The first method implements a deformable model that is guided and fitted to the orbit via haptic 3D interaction, whereas the second method implements a user-steered volumetric brush that uses distance and gradient information to find exact object boundaries.

The thesis also presents a semi-automatic method for measuring 3D angulation changes in wrist fractures. The fractured bone is extracted with interactive mesh segmentation, and the angulation is determined with a technique based on surface registration and RANSAC.

Lastly, the thesis presents an interactive and intuitive tool for segmenting individual bones and bone fragments. This type of segmentation is essential for virtual surgery planning, but takes several hours to perform with conventional manual methods. The presented tool combines GPU-accelerated random walks segmentation with direct volume rendering and interactive 3D texture painting to enable quick marking and separation of bone structures. It enables the user to produce an accurate segmentation within a few minutes, thereby removing a major bottleneck in the planning procedure.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2016. p. 58
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1411
Keywords
medical image analysis, interactive segmentation, volume rendering, computed tomography
National Category
Computer Sciences Medical Image Processing
Research subject
Computerized Image Processing
Identifiers
urn:nbn:se:uu:diva-301180 (URN)978-91-554-9668-5 (ISBN)
External cooperation:
Public defence
2016-09-30, ITC 2446, Lägerhyddsvägen 2, Uppsala, 10:15 (English)
Opponent
Supervisors
Available from: 2016-09-09 Created: 2016-08-19 Last updated: 2018-01-10

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttp://www.springerlink.com/content/l040m11078n16347/

Authority records

Nyström, IngelaNysjö, Johan

Search in DiVA

By author/editor
Nyström, IngelaNysjö, JohanMalmberg, Filip
By organisation
Centre for Image AnalysisComputerized Image Analysis and Human-Computer Interaction
Medical Image Processing

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 605 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf