Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A probable stellar solution to the cosmological lithium discrepancy
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Astronomy and Space Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Astronomy and Space Physics.
Show others and affiliations
2006 (English)In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 442, no 7103, p. 657-659Article in journal (Refereed) Published
Abstract [en]

The measurement of the cosmic microwave background has strongly constrained the cosmological parameters of the Universe. When the measured density of baryons (ordinary matter) is combined with standard Big Bang nucleosynthesis calculations, the amounts of hydrogen, helium and lithium produced shortly after the Big Bang can be predicted with unprecedented precision. The predicted primordial lithium abundance is a factor of two to three higher than the value measured in the atmospheres of old stars. With estimated errors of 10 to 25%, this cosmological lithium discrepancy seriously challenges our understanding of stellar physics, Big Bang nucleosynthesis or both. Certain modifications to nucleosynthesis have been proposed, but found experimentally not to be viable. Diffusion theory, however, predicts atmospheric abundances of stars to vary with time, which offers a possible explanation of the discrepancy. Here we report spectroscopic observations of stars in the metal-poor globular cluster NGC6397 that reveal trends of atmospheric abundance with evolutionary stage for various elements. These element-specific trends are reproduced by stellar-evolution models with diffusion and turbulent mixing. We thus conclude that diffusion is predominantly responsible for the low apparent stellar lithium abundance in the atmospheres of old stars by transporting the lithium deep into the star.

Place, publisher, year, edition, pages
2006. Vol. 442, no 7103, p. 657-659
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:uu:diva-18484DOI: 10.1038/nature05011ISI: 000239630200038OAI: oai:DiVA.org:uu-18484DiVA, id: diva2:46256
Available from: 2007-01-09 Created: 2007-01-09 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Korn, AndreasBarklem, PaulCollet, RemoPiskunov, NikolaiGustafsson, Bengt

Search in DiVA

By author/editor
Korn, AndreasBarklem, PaulCollet, RemoPiskunov, NikolaiGustafsson, Bengt
By organisation
Department of Astronomy and Space Physics
In the same journal
Nature
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 443 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf