uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Synthetic Biodegradable Ionomers that Engulf, Store, and Deliver Intact Proteins
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry, Polymer Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry, Polymer Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Surface Biotechnology.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry, Polymer Chemistry.
Show others and affiliations
2006 (English)In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 7, no 8, 2401-2406 p.Article in journal (Refereed) Published
Abstract [en]

Telechelic anionic and cationic biodegradable ionomers capable of loading, storing, and releasing proteins are presented. Two different ionomers have been synthesized with either anionic or cationic end groups. The reaction was done quantitatively as shown by 1H NMR. The swelling properties of the hydrophobic poly(trimethylene carbonate) polymer are contributed to the ionic end groups that display hydrophilic properties. Depending on the molecular weight of the ionomer, and also on the ionic charge, the materials swell differently in water, from ~50% for Mw = 12 000 g/mol to ~500% when dealing with 2000 g/mol. The high swelling led us to believe that it would be possible to load and release proteins preferably in a still active form. As models, two different proteins were chosen: hemoglobin and cytochrome c. The swelling and release study shows that both ionomers possess the capability to adsorb and later release the proteins with retained structure. Release measurements from both the swollen and dried states have been evaluated with similar results, showing that the dried state seems to release a little bit less than the swollen one. These kinds of materials should be interesting for a wide variety of applications where drug and protein release is wanted, as well as in applications such as protein separation media.

Place, publisher, year, edition, pages
2006. Vol. 7, no 8, 2401-2406 p.
National Category
Inorganic Chemistry
URN: urn:nbn:se:uu:diva-18666DOI: 10.1021/bm060396sISI: 000239723100022PubMedID: 16903688OAI: oai:DiVA.org:uu-18666DiVA: diva2:46438
Available from: 2006-11-21 Created: 2006-11-21 Last updated: 2013-09-26Bibliographically approved
In thesis
1. Tailoring of Biomaterials using Ionic Interactions: Synthesis, Characterization and Application
Open this publication in new window or tab >>Tailoring of Biomaterials using Ionic Interactions: Synthesis, Characterization and Application
2006 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The interactions between polymers and components of biological systems are an important area of interest within the fields of tissue engineering, polymer chemistry, medicine and biomaterials. In order to create such a biomimetic material, it must show the inherent ability to reproduce or elicit a biological function. How do we design synthetic materials in order to direct their interactions with biological systems?

This thesis contributes to this research with aspects of how polymers interact with biological materials with the help of ionic interactions. Polyesters, biodegradable or not, may after a hydrolytic cleavage interact ionically with protonated amines by the liberated carboxylate functions. Amines are found in proteins and this fact will help us to anchor proteins to polyester surfaces. Another type of interaction is to culture cells in polymeric materials, i.e. scaffolds. We have been working on compliant substrates, knitted structures, to allow cell culture in three dimensions. A problem that arises here is how to get a high cell seeding efficiency? By working on the interactions between polymers, proteins and finally cells, it is possible to create a polarized protein membrane that allows for very efficient cell seeding, and subsequent three dimensional cell cultures. Finally a synthetic route to taylor interaction was developed. Here a group of polymers known as ionomers were synthesized. In our case ionic end groups have been placed onto biodegradable polycarbonates, we have created amphiphilic telechelic ionomers. Functionalization, anionic or cationic, changes the properties of the material in many ways due to aggregation and surface enrichment of ionic groups. It is possible to add functional groups for a variety of different interactions, for example introducing ionic groups that interact and bind to the complementary charge of proteins or on the other hand one can chose groups to prevent protein interactions, like the phosphorylcholine zwitterionomers. Such interactions can be utilized to modulate the release of proteins from these materials when used in protein delivery applications. The swelling properties, Tg, degradation rate and mechanical properties are among other things that will easily be altered with the choice of functional groups or backbone polymer.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2006. 92 p.
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 193
Chemistry, biodegradable polymers, ionomer, water uptake, protein delivery, protein adsorption, protein membrane, cell seeding efficiency, amphiphillic, inner structure, polarized membrane, Kemi
urn:nbn:se:uu:diva-6924 (URN)91-554-6585-4 (ISBN)
Public defence
2006-06-07, Polhemsalen, Ångströmlaboratoriet, Regementsvägen 1, Uppsala, 10:00
Available from: 2006-05-17 Created: 2006-05-17 Last updated: 2013-09-26Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Atthoff, BjörnHilborn, JönsBowden, Tim
By organisation
Polymer ChemistrySurface Biotechnology
In the same journal
Inorganic Chemistry

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 422 hits
ReferencesLink to record
Permanent link

Direct link