uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
An archaeal origin for the actin cytoskeleton: implications for eukaryogenesis
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Evolution.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Evolution.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Evolution.
2011 (English)In: Communicative & Integrative Biology, ISSN 1942-0889, E-ISSN 1942-0889, Vol. 4, no 6, 664-667 p.Article in journal (Refereed) Published
Abstract [en]

A hallmark of the eukaryotic cell is the actin cytoskeleton, involved in a wide array of processes ranging from shape determination and phagocytosis to intracellular transport and cytokinesis. Recently, we reported the discovery of an actin-based cytoskeleton also in Archaea. The archaeal actin ortholog, Crenactin, was shown to belong to a conserved operon, Arcade (actin-related cytoskeleton in Archaea involved in shape determination), encoding an additional set of cytoskeleton-associated proteins. Here, we elaborate on the implications of these findings for the evolutionary relation between archaea and eukaryotes, with particular focus on the possibility that eukaryotic actin and actin-related proteins have evolved from an ancestral archaeal actin gene. Archaeal actin could thus have played an important role in cellular processes essential for the origin and early evolution of the eukaryotic lineage. Further exploration of uncharacterized archaeal lineages is necessary to find additional missing pieces in the evolutionary trajectory that ultimately gave rise to present-day organisms.

Place, publisher, year, edition, pages
Landes Bioscience , 2011. Vol. 4, no 6, 664-667 p.
National Category
Evolutionary Biology Cell Biology
Identifiers
URN: urn:nbn:se:uu:diva-165716DOI: 10.4161/cib.4.6.16974OAI: oai:DiVA.org:uu-165716DiVA: diva2:474496
Available from: 2012-01-09 Created: 2012-01-09 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full texthttp://www.landesbioscience.com/journals/cib/BernanderCIB4-6.pdf
By organisation
Molecular Evolution
In the same journal
Communicative & Integrative Biology
Evolutionary BiologyCell Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 372 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf