uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effect of PEO-PPO-PEO Triblock Copolymers on Structure and Stability of Phosphatidylcholine Liposomes
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Physical Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Physical Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Physical Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Physical Chemistry.
1999 (English)In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 15, no 19, 6314-6325 p.Article in journal (Refereed) Published
Abstract [en]

The interactions of five poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) (PEO-PPO-PEO), Pluronic, copolymers and phosphatidylcholine liposomes of varying composition have been studied. Structural studies were performed by means of cryo-transmission electron microscopy (c-TEM) and reveal that inclusion of low amounts (similar to 2 mol %) of Pluronics gives rise to significant morphological changes of the liposome preparations. Pluronics with large poly(oxyethylene) (PEO) blocks, such as F127, F108, and F87, induce the formation of bilayer disks, whereas those with comparably short PEO blocks, P105 and P85, tend to to promote a reduction in the liposome size. Inclusion of cholesterol in the liposomal preparations reduces the incorporation of copolymers in the lipid bilayer and thus reduces, and in some cases even abolishes, the morphological changes observed in the absence of cholesterol. The effect of the copolymers on liposome permeability was also investigated. All investigated copolymers were found to increase the leakage of carboxyfluorescein from preformed liposomes. This was true also in the case of cholesterol-containing Liposomes despite the fact that no change in the liposome structure could be observed by means of c-TEM. The magnitude of the induced leakage was found to correlate well with the hydrophobicity, as measured by the cmc, of the respective Pluronic. By raising the temperature or decreasing the solvency of the copolymer in the solution, the effect of the copolymer on liposome leakage was found to increase significantly.

Place, publisher, year, edition, pages
1999. Vol. 15, no 19, 6314-6325 p.
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:uu:diva-21256DOI: 10.1021/la990288+ISI: 000082618800027OAI: oai:DiVA.org:uu-21256DiVA: diva2:49029
Available from: 2006-12-18 Created: 2006-12-18 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Edwards, Katarina

Search in DiVA

By author/editor
Edwards, Katarina
By organisation
Department of Physical Chemistry
In the same journal
Langmuir
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 775 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf