uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Quantitative Live Cell Fluorescence-microscopy Analysis of Fission Yeast
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab. Swedish Univ Agr Sci, Dept Microbiol, S-90183 Umea, Sweden.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
2012 (English)In: Journal of Visualized Experiments, ISSN 1940-087X, E-ISSN 1940-087X, no 59, e3454- p.Article in journal (Refereed) Published
Abstract [en]

Several microscopy techniques are available today that can detect a specific protein within the cell. During the last decade live cell imaging using fluorochromes like Green Fluorescent Protein (GFP) directly attached to the protein of interest has become increasingly popular (1). Using GFP and similar fluorochromes the subcellular localisations and movements of proteins can be detected in a fluorescent microscope. Moreover, also the subnuclear localisation of a certain region of a chromosome can be studied using this technique. GFP is fused to the Lac Repressor protein (LacR) and ectopically expressed in the cell where tandem repeats of the lacO sequence has been inserted into the region of interest on the chromosome(2). The LacR-GFP will bind to the lacO repeats and that area of the genome will be visible as a green dot in the fluorescence microscope. Yeast is especially suited for this type of manipulation since homologous recombination is very efficient and thereby enables targeted integration of the lacO repeats and engineered fusion proteins with GFP (3). Here we describe a quantitative method for live cell analysis of fission yeast. Additional protocols for live cell analysis of fission yeast can be found, for example on how to make a movie of the meiotic chromosomal behaviour (4). In this particular experiment we focus on subnuclear organisation and how it is affected during gene induction. We have labelled a gene cluster, named Chr1, by the introduction of lacO binding sites in the vicinity of the genes. The gene cluster is enriched for genes that are induced early during nitrogen starvation of fission yeast (5). In the strain the nuclear membrane (NM) is labelled by the attachment of mCherry to the NM protein Cut11 giving rise to a red fluorescent signal. The Spindle Pole body (SPB) compound Sid4 is fused to Red Fluorescent Protein (Sid4-mRFP) (6). In vegetatively growing yeast cells the centromeres are always attached to the SPB that is embedded in the NM (7). The SPB is identified as a large round structure in the NM. By imaging before and 20 minutes after depletion of the nitrogen source we can determine the distance between the gene cluster (GFP) and the NM/SPB. The mean or median distances before and after nitrogen depletion are compared and we can thus quantify whether or not there is a shift in subcellular localisation of the gene cluster after nitrogen depletion.

Place, publisher, year, edition, pages
2012. no 59, e3454- p.
Keyword [en]
fission yeast, fluoresence microscopy, nuclear organisation
National Category
Cell and Molecular Biology
Research subject
Biology with specialization in Molecular Cell Biology
Identifiers
URN: urn:nbn:se:uu:diva-168502DOI: 10.3791/3454ISI: 000209222600024PubMedID: 22297579OAI: oai:DiVA.org:uu-168502DiVA: diva2:499301
Funder
Göran Gustafsson Foundation for promotion of scientific research at Uppala University and Royal Institute of TechnologySwedish Cancer Society
Available from: 2012-02-13 Created: 2012-02-13 Last updated: 2017-12-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Bjerling, Pernilla

Search in DiVA

By author/editor
Bjerling, Pernilla
By organisation
Department of Medical Biochemistry and MicrobiologyScience for Life Laboratory, SciLifeLab
In the same journal
Journal of Visualized Experiments
Cell and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 806 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf