uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rotation, magnetism and metallicity of M dwarf systems
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Observational Astronomy.
Show others and affiliations
2011 (English)In: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966, Vol. 418, no 4, 2548-2557 p.Article in journal (Refereed) Published
Abstract [en]

Close M dwarf binaries and higher multiples allow the investigation of rotational evolution and mean magnetic flux unbiased from scatter in inclination angle and age since the orientation of the spin axis of the components is most likely parallel and the individual systems are coeval. Systems composed of an early-type (M0.0-M4.0) and a late-type (M4.0-M8.0) component offer the possibility to study differences in rotation and magnetism between partially and fully convective stars. We have selected 10 of the closest dM systems to determine the rotation velocities and the mean magnetic field strengths based on spectroscopic analysis of FeH lines of Wing-Ford transitions at 1 μm observed with Very Large Telescope/CRIRES. We also studied the quality of our spectroscopic model regarding atmospheric parameters including metallicity. A modified version of the Molecular Zeeman Library (MZL) was used to compute Landég-factors for FeH lines. Magnetic spectral synthesis was performed with the SYNMAST code. We confirmed previously reported findings that less massive M dwarfs are braked less effectively than objects of earlier types. Strong surface magnetic fields were detected in primaries of four systems (GJ 852, GJ 234, LP 717-36 and GJ 3322), and in the secondary of the triple system GJ 852. We also confirm strong 2-kG magnetic field in the primary of the triple system GJ 2005. No fields could be accurately determined in rapidly rotating stars with \upsi sin i \gt 10 km s$^-1$. For slowly and moderately rotating stars, we find the surface magnetic field strength to increase with the rotational velocity \upsi sin i which is consistent with other results from studying field stars. Based on observations made with European Southern Observatory (ESO) Telescopes at the Paranal Observatories under programme ID 81.D-0189.

Place, publisher, year, edition, pages
2011. Vol. 418, no 4, 2548-2557 p.
Keyword [en]
stars, atmospheres, binaries, spectroscopic, low-mass, magnetic field, rotation
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:uu:diva-169080DOI: 10.1111/j.1365-2966.2011.19644.xISI: 000298088100036OAI: oai:DiVA.org:uu-169080DiVA: diva2:505053
Available from: 2012-02-22 Created: 2012-02-22 Last updated: 2017-12-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Kochukhov, OlegPiskunov, Nikolai

Search in DiVA

By author/editor
Kochukhov, OlegPiskunov, Nikolai
By organisation
Observational Astronomy
In the same journal
Monthly notices of the Royal Astronomical Society
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 915 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf