uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Haemocompatibility and ion exchange capability of nanocellulose polypyrrole membranes intended for blood purification
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials. (Nanoteknologi och funktionella material)
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials. (Nanoteknologi och funktionella material)
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
Show others and affiliations
2012 (English)In: Journal of the Royal Society Interface, ISSN 1742-5689, E-ISSN 1742-5662, Vol. 9, no 73, 1943-1955 p.Article in journal (Refereed) Published
Abstract [en]

Composites of nanocellulose and the conductive polymer polypyrrole (PPy) are presented as candidates for a new generation of haemodialysis membranes. The composites may combine active ion exchange with passive ultrafiltration, and the large surface area (about 80 m2 g−1) could potentially provide compact dialysers. Herein, the haemocompatibility of the novel membranes and the feasibility of effectively removing small uraemic toxins by potential-controlled ion exchange were studied. The thrombogenic properties of the composites were improved by applying a stable heparin coating. In terms of platelet adhesion and thrombin generation, the composites were comparable with haemocompatible polymer polysulphone, and regarding complement activation, the composites were more biocompatible than commercially available membranes. It was possible to extract phosphate and oxalate ions from solutions with physiological pH and the same tonicity as that of the blood. The exchange capacity of the materials was found to be 600 ± 26 and 706 ± 31 μmol g−1 in a 0.1 M solution (pH 7.4) and in an isotonic solution of phosphate, respectively. The corresponding values with oxalate were 523 ± 5 in a 0.1 M solution (pH 7.4) and 610 ± 1 μmol g−1 in an isotonic solution. The heparinized PPy–cellulose composite is consequently a promising haemodialysis material, with respect to both potential-controlled extraction of small uraemic toxins and haemocompatibility.

Place, publisher, year, edition, pages
2012. Vol. 9, no 73, 1943-1955 p.
National Category
Nano Technology Medical and Health Sciences
Research subject
Engineering Science with specialization in Nanotechnology and Functional Materials
Identifiers
URN: urn:nbn:se:uu:diva-169218DOI: 10.1098/rsif.2012.0019ISI: 000305810200023PubMedID: 22298813OAI: oai:DiVA.org:uu-169218DiVA: diva2:505594
Available from: 2012-02-24 Created: 2012-02-24 Last updated: 2017-12-07Bibliographically approved
In thesis
1. Structural and Electrochemical Properties of Functionalized Nanocellulose Materials and Their Biocompatibility
Open this publication in new window or tab >>Structural and Electrochemical Properties of Functionalized Nanocellulose Materials and Their Biocompatibility
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Nanocellulose has received considerable interest during the last decade because it is renewable and biodegradable, and has excellent mechanical properties, nanoscale dimensions and wide functionalization possibilities. It is considered to be a unique and versatile platform on which new functional materials can be based.

This thesis focuses on nanocellulose from wood (NFC) and from Cladophora algae (CNC), functionalized with surface charges or coated with the conducting polymer polypyrrole (PPy), aiming to study the influence of synthesis processes on structural and electrochemical properties of such materials and assess their biocompatibility.

The most important results of the work demonstrated that 1) CNC was oxidized to the same extent using electrochemical TEMPO-mediated oxidation as with conventional TEMPO processes, which may facilitate easier reuse of the reaction medium; 2) NFC and CNC films with or without surface charges were non-cytotoxic as assessed by indirect in vitro testing. Anionic TEMPO-CNC films promoted fibroblast adhesion and proliferation in direct in vitro cytocompatibility testing, possibly due to its aligned fibril structure; 3) Rinsing of PPy-coated nanocellulose fibrils, which after drying into free-standing porous composites are applicable for energy storage and electrochemically controlled ion extraction, significantly degraded the PPy coating, unless acidic rinsing was employed. Only minor degradation was observed during long-term ambient storage; 4) Variations in the drying method as well as type and amount of nanocellulose offered ways of tailoring the porosities of nanocellulose/PPy composites between 30% and 98%, with increments of ~10%. Supercritical CO2-drying generated composites with the largest specific surface area yet reported for nanocellulose/conducting polymer composites (246 m2/g). The electrochemical oxidation rate was found to be controlled by the composite porosity; 5) In blood compatibility assessments for potential hemodialysis applications, heparinization of CNC/PPy composites was required to obtain thrombogenic properties comparable to commercial hemodialysis membranes. The pro-inflammatory characteristics of non-heparinized and heparinized composites were, to some extent, superior to commercial membranes. The heparin coating did not affect the solute extraction capacity of the composite.

The presented results are deemed to be useful for tuning the properties of systems based on the studied materials in e.g. energy storage, ion exchange and biomaterial applications.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2014. 73 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1109
Keyword
Nanocellulose, nanofibrillated cellulose, Cladophora cellulose, polypyrrole, TEMPO-mediated oxidation, composite, porosity, cytocompatibility, blood compatibility
National Category
Nano Technology Materials Engineering Physical Sciences Chemical Sciences
Research subject
Engineering Science with specialization in Nanotechnology and Functional Materials
Identifiers
urn:nbn:se:uu:diva-215090 (URN)978-91-554-8842-0 (ISBN)
Public defence
2014-02-25, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:30 (English)
Opponent
Supervisors
Available from: 2014-02-03 Created: 2014-01-10 Last updated: 2014-09-11

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Ferraz, NataliaCarlsson, Daniel O.Hong, JaanLarsson, RolfFellström, BengtNyholm, LeifStrømme, MariaMihranyan, Albert

Search in DiVA

By author/editor
Ferraz, NataliaCarlsson, Daniel O.Hong, JaanLarsson, RolfFellström, BengtNyholm, LeifStrømme, MariaMihranyan, Albert
By organisation
Nanotechnology and Functional MaterialsClinical ImmunologyRenal MedicineInorganic Chemistry
In the same journal
Journal of the Royal Society Interface
Nano TechnologyMedical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 1234 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf