uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Repeated maternal separation of male Wistar rats alters glutamate receptor expression in the hippocampus but not the prefrontal cortex
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences. (Neuropharmacology, Addiction & Behaviour)
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences. (Neuropharmacology, Addiction & Behaviour)
Show others and affiliations
2006 (English)In: Brain Research, ISSN 0006-8993, E-ISSN 1872-6240, Vol. 1099, no 1, 101-108 p.Article in journal (Refereed) Published
Abstract [en]

Stress early in life puts the individual at a greater risk for developing mental disorders in adulthood. The animal model of maternal separation involves daily removal of pups from their mother over the early postnatal period and leads to several behavioral deficits in adults. Since this period corresponds to a time of extensive developmental changes in the glutamatergic system, glutamate receptor mRNA expression was studied in the hippocampus and prefrontal cortex. Male Wistar rats were either separated from their mother for 15 min (MS15 or 'handling') or 360 min (MS360) once a day from pnd 1-21 and glutamate receptor expression levels were measured at 25 weeks of age using real-time RTPCR analysis. A third group of animal facility reared (AFR) rats was included as a control for the handling group. In the hippocampus, mRNA expression of NMDA NR2B and AMPA GluR1 and GluR2 receptors was significantly lower in MS360 rats relative to MS15. In addition, expression of the glutamate transporter GLAST was increased in MS360 relative to MS15. No differences were observed for AFR rats relative to MS15, which indicates that the hippocampal effects were not a result of handling or maternal care. For the prefrontal cortex, no difference in mRNA expression was observed for NMDA NR2A and NR2B or AMPA GluR1 and GluR2. These findings suggest that prolonged maternal separation produces neuroadaptive changes in the hippocampus that may, at least partially, account for the behavioral deficits previously observed in this animal model.

Place, publisher, year, edition, pages
2006. Vol. 1099, no 1, 101-108 p.
Keyword [en]
AMPA, NMDA, development, mRNA, PCR, stress
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-22952DOI: 10.1016/j.brainres.2006.04.136ISI: 000239733200013PubMedID: 16784730OAI: oai:DiVA.org:uu-22952DiVA: diva2:50725
Available from: 2007-01-23 Created: 2007-01-23 Last updated: 2017-12-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Nylander, Ingrid

Search in DiVA

By author/editor
Nylander, Ingrid
By organisation
Department of Pharmaceutical Biosciences
In the same journal
Brain Research
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 370 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf